Skip to content

Run RiskPaths Model from local PC R in cloud

amc1999 edited this page Nov 4, 2023 · 3 revisions

OpenM++ integration with R: use local PC RStudio to run RiskPaths model on cloud grid

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for openM++ models:

  • openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;
  • oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

Below is an example of oms JSON web-service usage to run RiskPaths model on cloud grid from your local PC RStudio. There is an identical example to:

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

  • Age baseline for first union formation
  • Relative risks of union status on first pregnancy by following scale factor:
scaleValues <- seq(from = 0.44, to = 1.00, by = 0.08)

Please keep in mind, scaling above result in 64 runs of RiskPaths model, to reduce waiting time we are using only 1024 simulation cases in script below.

Prerequisite Following environmemnt variables are required:

OM_CLOUD_URL=https://your-user.cloud.org
OM_CLOUD_USER=your-login-name
OM_CLOUD_PWD=your-secret-password

If there are no any other options avaliable then you can store above values in .Renviron file in your HOME directory. On Windows HOME directory is: "C:\Users\User Name Here\Documents". Important Security Warning: .Renviron file is NOT a safe place to strore login information. Contact your IT security team for better solution.

Create .Renviron file.

Verify cloud login settings.

Important: Clear console and clear history after checking your login name and password.

R script

#
# R integration example using RiskPaths model
#   to analyze contribution of delayed union formations
#   versus decreased fertility on childlessness
#
# Cloud model run from local user PC
#
# Prerequisite:
#
# 1.
# Cloud user account:
#   Following environmemnt variables are required:
#     OM_CLOUD_URL  - cloud URL, e.g.:       https://model.openmpp.org
#     OM_CLOUD_USER - user login name, e.g.: demo
#     OM_CLOUD_PWD  - login password, e.g.:  my-secret-password
#
# You can use .Renviron file to define it if there are no any other options avaliable.
# !!! Security warning: 
#     .Renviron file is not the safe place to store passwords
#
# Script below is using openM++ web-service "oms" in cloud
# to run the model, modify parameters and read output values.
#
# 2.
# omsCommon.R file which contains helper functions.
#
# Place it in your $HOME directory
# on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
# if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
# if you have omsCommon.R in some other location then update path below

# If jsonlite or httr is not installed then do:
#   install.packages("jsonlite")
#   install.packages("httr")
#
library("jsonlite")
library("httr")

# Include openM++ helper functions from your $HOME directory
#
source("~/omsCommon.R")

# login to cloud workspace
#
lg <- loginToOpenmCloud()
apiUrl <- lg$apiUrl
loginToken <- lg$loginToken

#
# Using RiskPaths model
#   to analyze contribution of delayed union formations
#   versus decreased fertility on childlessness
#
# Input parameters:
#   AgeBaselineForm1: age baseline for first union formation
#   UnionStatusPreg1: relative risks of union status on first pregnancy
# Output value:
#   T05_CohortFertility: Cohort fertility, expression 1
#

# Model name: RiskPaths
#
# If you have multiple versions of the model with the same name
# then instead of:
#   ModelName = "RiskPaths"
# use model digest to identify specific model version, for example:
#   ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"
#
md <- "RiskPaths"


# Find first model run to use it as our base run
#
# Parameters AgeBaselineForm1 and UnionStatusPreg1 are varied by this script
# and the rest of parameters we are getting from base model run
#
rsp <- GET(
    paste0(
      apiUrl, "model/", md, "/run/status/first"
    ),
    set_cookies(jwt_token = loginToken)
  )
if (http_type(rsp) != 'application/json') {
  stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest

# get initial values for AgeBaselineForm1 and UnionStatusPreg1 parameters
# by reading it from first model run results
#
rsp <- GET(
    paste0(
      apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/AgeBaselineForm1/value/start/0/count/0"
    ),
    set_cookies(jwt_token = loginToken)
  )
if (http_type(rsp) != 'application/json') {
  stop("Failed to get parameter AgeBaselineForm1")
}
ageFirstUnion <- content(rsp)

rsp <- GET(
    paste0(
      apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/UnionStatusPreg1/value/start/0/count/0"
    ),
    set_cookies(jwt_token = loginToken)
  )
if (http_type(rsp) != 'application/json') {
  stop("Failed to get parameter UnionStatusPreg1")
}
unionStatusPreg <- content(rsp)

# Create multiple input scenarios and save all of it as our modelling task:
#   apply scale in range from 0.44 to 1.0
#   to AgeBaselineForm1 and UnionStatusPreg1 parameters
#
# scaleStep <- 0.08 # do 64 model runs
# scaleStep <- 0.5  # use this for quick test
#
scaleStep <- 0.08
scaleValues <- seq(from = 0.44, to = 1.00, by = scaleStep)

nameLst <- c()  # input scenario names, automatically generated

for (scaleAgeBy in scaleValues)
{
  print(c("Scale age: ", scaleAgeBy))

  ag <- ageFirstUnion
  for (k in 1:length(ag))
  {
    ag[[k]]$Value <- ageFirstUnion[[k]]$Value * scaleAgeBy
  }

  for (scaleUnionBy in scaleValues)
  {
    un <- unionStatusPreg
    un[[1]]$Value <- un[[1]]$Value * scaleUnionBy  # change only first two values
    un[[2]]$Value <- un[[2]]$Value * scaleUnionBy  # of UnionStatusPreg1 parameter

    # create new input scenario
    # automatically generate unique names for each input scenario
    #
    pd <- list(
        ModelName = md,
        Name = "",
        BaseRunDigest = firstRunDigest,
        IsReadonly = TRUE,
        Txt = list(
          list(LangCode = "EN", Descr = paste("Scale age:", scaleAgeBy, ", union status", scaleUnionBy)),
          list(LangCode = "FR", Descr = paste("Échelle d'âge:", scaleAgeBy, ", statut syndical", scaleUnionBy))
        ),
        Param = list(
          list(
            Name = "AgeBaselineForm1",
            SubCount = 1,
            Value = ag,
            Txt = list(
              list(LangCode = "FR", Note = paste("Mettre à l'échelle l'âge par:", scaleAgeBy))
            )
          ),
          list(
            Name = "UnionStatusPreg1",
            SubCount = 1,
            Value = un,
            Txt = list(
              list(LangCode = "EN", Note = paste("Scale union status by:", scaleAgeBy))
            )
          )
        )
      )
    jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

    # create input scenario by submitting request to oms web-service
    rsp <- PUT(
        paste0(
          apiUrl, "workset-create"
        ),
        body = jv,
        content_type_json(),
        set_cookies(jwt_token = loginToken)
      )
    if (http_type(rsp) != 'application/json') {
      stop("Failed to create input set")
    }
    jr <- content(rsp)
    sn <- jr$Name  # name of new input scenario generated by oms web-service

    if (is.na(sn) || sn == "") stop("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)

    nameLst <- c(nameLst, sn)
  }
}

# Create modeling task from all input sets
# automatically generate unique name for the task
#
inpLen <- length(nameLst)

print(paste("Create task from", inpLen, "input scenarios"))

pd <- list(
    ModelName = md,
    Name = "",
    Set = nameLst,
    Txt = list(
      list(
        LangCode = "EN",
        Descr = paste("Task to run RiskPaths", inpLen, "times"),
        Note = paste("Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step", scaleStep)
      )
    )
  )
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)


# create task by submitting request to oms web-service
rsp <- PUT(
    paste0(
      apiUrl, "task-new"
    ),
    body = jv,
    content_type_json(),
    set_cookies(jwt_token = loginToken)
  )
if (http_type(rsp) != 'application/json') {
  stop("Failed to create modeling task")
}
jr <- content(rsp)
taskName <- jr$Name  # name of new task generated by oms web-service

if (is.na(taskName) || taskName == "") stop("Fail to create modeling task")

#
# Run RiskPaths with modeling task and wait until task is completed
# It is a sequential run, not parallel.
#
# Running 4 RiskPaths_mpi instances: "root" leader process and 3 computational processes
# each computational process using modelling 4 threads
# root process does only database operations and coordinate child workoload.
#
print(paste("Starting modeling task:", taskName))

# use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))

# prepare model run options
pd <- list(
    ModelDigest = md,
    Mpi = list(
      Np = 5,               # MPI cluster: run 5 processes: 4 for model and rott process
      IsNotOnRoot = TRUE    # MPI cluster: do not use root process for modelling
    ),
    Template = "mpi.RiskPaths.template.txt",  # MPI cluster: model run tempate
    Opts = list(
      OpenM.TaskName = taskName,
      OpenM.RunStamp = stamp,                # use explicit run stamp
      Parameter.SimulationCases = "1024",    # use 1024 simulation cases to get quick results
      OpenM.BaseRunDigest = firstRunDigest,  # base run to get the rest of input parameters
      OpenM.SubValues = "16",                # use 16 sub-values (sub-samples)
      OpenM.Threads = "4",                   # use 4 modeling threads
      OpenM.ProgressPercent = "100"          # reduce amount of progress messages in the log file
    )
  )
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

# run modeling task
rsp <- POST(
    paste0(
      apiUrl, "run"
    ),
    body = jv,
    content_type_json(),
    set_cookies(jwt_token = loginToken)
  )
if (http_type(rsp) != 'application/json') {
  stop("Failed to run the model")
}
jr <- content(rsp)

submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run queue
runStamp <- jr$RunStamp       # model run stamp: by default empty until model run not started

# wait until task completed
runDigests <- waitForTaskCompleted(taskName, stamp, apiUrl, md, loginToken)

#
# get results of task run, cohort fertility: T05_CohortFertility.Expr1
#
pd <- list(
    Name = "T05_CohortFertility",
    ValueName = "Expr1",
    Size = 0             # read all rows of T05_CohortFertility.Expr1
  )
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runIdx <- 1
for (k in 1:scaleLen)
{
  for (j in 1:scaleLen)
  {
    # for each run digest get T05_CohortFertility.Expr1 value
    #
    rsp <- POST(
        paste0(
            apiUrl, "model/", md, "/run/", runDigests[runIdx], "/table/value"
        ),
        body = jv,
        content_type_json(),
        set_cookies(jwt_token = loginToken)
      )
    if (http_type(rsp) != 'application/json') {
      stop("Failed to get T05_CohortFertility.Expr1")
    }
    jt <- content(rsp, type = "text", encoding = "UTF-8")
    cf <- fromJSON(jt, flatten = TRUE)

    # value is not NULL then use it else keep default NA
    if (!cf$Page$IsNull)
    {
      childlessnessMat[k, j] = cf$Page$Value
    }
    runIdx <- runIdx + 1
  }
}

#
# display the results
#
persp(
  x = scaleValues,
  y = scaleValues,
  z = childlessnessMat,
  zlim = range(childlessnessMat, na.rm = TRUE),
  xlab = "Decreased union formation",
  ylab = "Decreased fertility",
  zlab = "Childlessness",
  theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
  col = "lightgreen",
  cex.axis = 0.7
)

# Cleanup:
# delete modelling task
# delete all input scenarios

print(paste("Delete", taskName))

rsp <- DELETE(
    paste0(
      apiUrl, "model/", md, "/task/", taskName
    ),
    set_cookies(jwt_token = loginToken)
  )
stop_for_status(rsp, "delete modelling task")

for (sn in nameLst)
{
  print(paste("Delete", sn))

  rsp <- POST(
      paste0(
        apiUrl, "model/", md, "/workset/", sn, "/readonly/false"
      ),
      set_cookies(jwt_token = loginToken)
    )
  stop_for_status(rsp, paste("update read-only status of input set", sn))

  rsp <- DELETE(
      paste0(
        apiUrl, "model/", md, "/workset/", sn
      ),
      set_cookies(jwt_token = loginToken)
    )
  stop_for_status(rsp, paste("delete input set", sn))
}

Home

Getting Started

Model development in OpenM++

Using OpenM++

Model Development Topics

OpenM++ web-service: API and cloud setup

Using OpenM++ from Python and R

Docker

OpenM++ Development

OpenM++ Design, Roadmap and Status

OpenM++ web-service API

GET Model Metadata

GET Model Extras

GET Model Run results metadata

GET Model Workset metadata: set of input parameters

Read Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata as CSV

GET Modeling Task metadata and task run history

Update Model Profile: set of key-value options

Update Model Workset: set of input parameters

Update Model Runs

Update Modeling Tasks

Run Models: run models and monitor progress

Download model, model run results or input parameters

Upload model runs or worksets (input scenarios)

Download and upload user files

User: manage user settings

Model run jobs and service state

Administrative: manage web-service state

Clone this wiki locally