Skip to content

Run RiskPaths Model from R

amc1999 edited this page Aug 13, 2024 · 10 revisions

OpenM++ integration with R: using RiskPaths model

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for openM++ models:

  • openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;
  • oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

Below is an example how to do advanced parameters analysis and run RiskPaths model on desktop using openMpp R package. There is an identical example to:

OpenM++ provides R package openMpp to simplify access to openM++ database for R developers. To find out more about openMpp R package please check:

There is also an excelent R package created by Matthew T. Warkentin available at: mattwarkentin.github.io/openmpp.

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

  • Age baseline for first union formation
  • Relative risks of union status on first pregnancy by following scale factor:
scaleValues <- seq(from = 0.44, to = 1.00, by = 0.02)

Please keep in mind, scaling above result in 841 runs of RiskPaths model and task may take long time to be completed. If you want to get results faster scale values by 0.08 instead of 0.02.

OpenM++ Run RiskPaths Model from R

R script

# use openMpp library for openM++ database access
library(DBI)
library("openMpp")
library("RSQLite")

#
# Using RiskPaths model 
#   to analyze contribution of delayed union formations 
#   versus decreased fertility on childlessness
#
# Input parameters:
#   AgeBaselineForm1: age baseline for first union formation
#   UnionStatusPreg1: relative risks of union status on first pregnancy
# Output value:
#   T05_CohortFertility: Cohort fertility, expression 1
#

##################################################################
# To run this example please uncomment and/or change values below
# to match your hardware and file system environment:
#
# model_exe    <- path to the model executable, i.e.: "./RiskPaths" or "RiskPaths.exe"
# model_sqlite <- path to the model.sqlite database:  "RiskPaths.sqlite"
# model_args   <- optional arguments to control model run, for example:
#       -OpenM.SubValues 8 <- number of simation members
#       -OpenM.Threads 4   <- number of computatinal threads
#
### For running on a local machine using the working directory in R 
#
# For the following values to work, you must first set the R Working directory
# to the directory containing the RiskPaths executable and the SQLite database.
# In RStudio Session > Set Working Directory > Choose Directory, 
# then navigate to location, e.g.: /OM_ROOT/models/RiskPaths/ompp/bin
# Alternatively, one may use setwd(), e.g.: setwd("/OM_ROOT/models/RiskPaths/ompp/bin")
#
model_exe = "./RiskPaths"
model_sqlite = "RiskPaths.sqlite"
model_args = " "  # default: 1 simulation member and 1 thread
# model_args = " -OpenM.SubValues 8 -OpenM.Threads 4" 
#
### For running on a local machine using explicit paths
#
# model_exe = "/path/to/executable/model/RiskPaths"
# model_sqlite = "/path/to/SQLite/database/RiskPaths.sqlite"
#
### For running on cluster (change to match your cluster)
#
# model_exe = "mpiexec"
# model_sqlite = "/mirror/RiskPaths.sqlite"
# model_args = "-n 8 /mirror/RiskPaths -OpenM.SubValues 16 -OpenM.Threads 2"
##################################################################

# 
# connect to database to model databes
#
theDb <- dbConnect(RSQLite::SQLite(), model_sqlite, synchronous = "full")
invisible(dbGetQuery(theDb, "PRAGMA busy_timeout = 86400"))   # recommended

# find RiskPaths model in database and get model dictionaries ("modelDic", "typeDic", etc...)
defRs <- getModel(theDb, "RiskPaths")

#
# create a copy of default model parameters
#
baseRunId <- getFirstRunId(theDb, defRs)
if (baseRunId <= 0) 
  stop("no run results found for the model ", defRs$modelDic$model_name, " ", defRs$modelDic$model_digest)

#
# get default values for AgeBaselineForm1 and UnionStatusPreg1 parameters 
# by reading it from first model run results
# assuming first run of the model done with default set of parameters
#
ageFirstUnionRs   <- selectRunParameter(theDb, defRs, baseRunId, "AgeBaselineForm1")
unionStatusPregRs <- selectRunParameter(theDb, defRs, baseRunId, "UnionStatusPreg1")

#
# create modeling task with
# all input parameters same as model default except of
# AgeBaselineForm1, UnionStatusPreg1 and SimulationCases parameters
#
casesParam <- list(name = "SimulationCases", value = 1000L) # number of simulation cases

taskTxt <- data.frame(      # name (auto generated), description and notes for the task
  name  = NA,
  lang  = "EN",
  descr = "Analyzing childlessness",
  note  = NA,
  stringsAsFactors = FALSE
)

taskId <- createTask(theDb, defRs, taskTxt)
if (taskId <= 0L) stop("task creation failed: ", defRs$modelDic$model_name, " ", defRs$modelDic$model_digest)

# parameters scale
#
# scaleValues <- seq(from = 0.50, to = 1.00, by = 0.50) # tiny set of runs for quick test
#
scaleValues <- seq(from = 0.44, to = 1.00, by = 0.02)

UnionStatusMultipler = rep(1, length(unionStatusPregRs$param_value)) # vector of 1's

for (scAgeBy in scaleValues)
{
  print(c("Scale age: ", scAgeBy))
  
  for (scUnionBy in scaleValues)
  {
    ageParam <- list(name = "AgeBaselineForm1", value = ageFirstUnionRs$param_value * scAgeBy)
    
    UnionStatusMultipler[1:2] = scUnionBy  # scale first two values of parameter vector
    unionParam <- list(name = "UnionStatusPreg1", value = unionStatusPregRs$param_value *  UnionStatusMultipler )

    # Append new working set of parameters into the task. A corresponding setId is generated.
    setId <- createWorksetBasedOnRun(theDb, defRs, baseRunId, NA, ageParam, unionParam, casesParam)
    setReadonlyWorkset(theDb, defRs, TRUE, setId)
    
    taskId <- updateTask(theDb, defRs, taskId, setIds = setId)
  }
}

#
# run the model on cluster or local desktop
# consult your cluster admin on how to use computational grid
print(paste("Run the model:", model_exe, "...please wait..."))

system2(
  model_exe, 
  paste(
    model_args,
    " -OpenM.TaskId ", taskId, 
    " -OpenM.LogToConsole false",
    " -OpenM.LogToFile true",
    " -OpenM.ProgressPercent 100",
    sep = ""
  )
)

#
# read results of task run from database
#   cohort fertility: T05_CohortFertility.Expr1
#
taskRunId <- getTaskLastRunId(theDb, taskId)  # most recent task run id
taskRunRs <- selectTaskRun(theDb, taskRunId)  # get result id's
#
# taskRunId
# [1] 111
# taskRunRs$taskRunSet  # Content for "tiny set of runs"
#   task_run_id run_id set_id task_id
# 1         108    109    104     103
# 2         108    110    105     103
# 3         108    111    106     103
# 4         108    112    107     103
# Main scenario task_id 103 comes with 4 sets of parameters  set_id 104, 105, 106, 107  (e.g. PSA)
# The main scenario/task was run (task_run_id 108) which spins out 4 runs run_id 109, 110, 111, 112

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runPos <- 1
for (k in 1:scaleLen)
{
  for (j in 1:scaleLen)
  {
    # cohort fertility: T05_CohortFertility.Expr1
    expr1Rs <- selectRunOutputValue(theDb, defRs, taskRunRs$taskRunSet$run_id[runPos], "T05_CohortFertility", "Expr1")
    childlessnessMat[k, j] = expr1Rs$expr_value
    runPos <- runPos + 1
  }
}

dbDisconnect(theDb)   # close database connection

#
# display the results
#
persp(
  x = scaleValues,
  y = scaleValues,
  z = childlessnessMat,
  xlab = "Decreased union formation",
  ylab = "Decreased fertility", 
  zlab = "Childlessness", 
  theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
  col = "lightgreen",
  cex.axis = 0.7
)

Home

Getting Started

Model development in OpenM++

Using OpenM++

Model Development Topics

OpenM++ web-service: API and cloud setup

Using OpenM++ from Python and R

Docker

OpenM++ Development

OpenM++ Design, Roadmap and Status

OpenM++ web-service API

GET Model Metadata

GET Model Extras

GET Model Run results metadata

GET Model Workset metadata: set of input parameters

Read Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata as CSV

GET Modeling Task metadata and task run history

Update Model Profile: set of key-value options

Update Model Workset: set of input parameters

Update Model Runs

Update Modeling Tasks

Run Models: run models and monitor progress

Download model, model run results or input parameters

Upload model runs or worksets (input scenarios)

Download and upload user files

User: manage user settings

Model run jobs and service state

Administrative: manage web-service state

Clone this wiki locally