Skip to content

Oms API PUT replace workset

amc1999 edited this page Sep 23, 2021 · 2 revisions

Create new or replace existing model workset metadata, parameter(s) metadata and parameter(s) values.

  • Workset is a set of model input parameters (a.k.a. "scenario" input).
  • Workset can be used to run the model.
  • Workset is uniquely identified by name (in model context).
  • Workset must be read-only in order to run the model with this set of input parameters.
  • If user want to edit this set input parameters it must be read-write (not read-only status).

This method replace workset metadata, parameter(s) metadata and parameter(s) values from multipart-form, expected multipart form parts:

  • first workset part with workset metadata and parameters metadata in json
  • optional multiple parts file-csv=parameterName.csv.

If no such workset exist in database then new workset created.

If workset name not specified or empty then new workset created with unique name.

If workset already exist then it is delete-insert operation:

  • existing metadata, parameter list, parameter metadata and parameter values deleted from database;
  • new metadata, parameters metadata and parameters values inserted.

For each parameter in the parameter list csv parameter values must be supplied. Workset cannot contain parameter metadata only, it must have parameter values as parameter.csv part.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have workset with name "Default".

This is a beta version and may change in the future.

Method:

PUT /api/workset-replace

For example:

curl -v -X PUT -F "[email protected]" http://localhost:4040/api/workset-replace
curl -v -X PUT -F "[email protected]" -F "parameter-csv=@new_ageSex.csv;filename=ageSex.csv" http://localhost:4040/api/workset-replace

JSON arguments:

It is expected to be same JSON as return of Get Workset Metadata in All Languages method.

For example (test.json file):

{
  "ModelName": "modelOne",
  "ModelDigest": "_201208171604590148_",
  "Name": "modelOne_set2",
  "BaseRunDigest": "",
  "IsReadonly": false,
  "Txt": [{
      "LangCode": "EN",
      "Descr": "modelOne modified set of parameters",
      "Note": ""
    }, {
      "LangCode": "FR",
      "Descr": "(FR) modelOne modified set of parameters",
      "Note": "(FR) modelOne workset notes"
    }
  ],
  "Param": [{
      "Name": "ageSex",
      "SubCount": 1,
      "DefaultSubId": 0,
      "Txt": [{
          "LangCode": "EN",
          "Note": "Age by Sex modified values"
        }, {
          "LangCode": "FR",
          "Note": "(FR) Age by Sex modified values"
        }
      ]
    }
  ]
}

Each parameter.csv part expected to be same as return of methods:

For example (new_ageSex.csv file):

sub_id,dim0,dim1,param_value
0,10-20,M,1.1
0,10-20,F,1.2
0,20-30,M,1.3
0,20-30,F,1.4
0,30-40,M,1.5
0,30-40,F,1.6
0,40+,M,1.7
0,40+,F,1.8

JSON response:

{
  "SetId": 142,
  "BaseRunId": 101,
  "ModelId": 1,
  "Name": "auto_name_set_of_parameters_2020_05_01_15_22_54_807",
  "IsReadonly": false,
  "UpdateDateTime": "2020-05-01 15:22:54.809"
}

Home

Getting Started

Model development in OpenM++

Using OpenM++

Model Development Topics

OpenM++ web-service: API and cloud setup

Using OpenM++ from Python and R

Docker

OpenM++ Development

OpenM++ Design, Roadmap and Status

OpenM++ web-service API

GET Model Metadata

GET Model Extras

GET Model Run results metadata

GET Model Workset metadata: set of input parameters

Read Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata as CSV

GET Modeling Task metadata and task run history

Update Model Profile: set of key-value options

Update Model Workset: set of input parameters

Update Model Runs

Update Modeling Tasks

Run Models: run models and monitor progress

Download model, model run results or input parameters

Upload model runs or worksets (input scenarios)

Download and upload user files

User: manage user settings

Model run jobs and service state

Administrative: manage web-service state

Clone this wiki locally