-
Notifications
You must be signed in to change notification settings - Fork 0
Run RiskPaths Model from local PC R in cloud
It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for openM++ models:
- openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;
-
oms
JSON web-service API: preferable choice to run models on computational clusters and in cloud.
There is also an excelent R package created by Matthew T. Warkentin available at: mattwarkentin.github.io/openmpp.
Below is an example of oms
JSON web-service usage to run RiskPaths model on cloud grid from your local PC RStudio.
There is an identical example to:
Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:
- Age baseline for first union formation
- Relative risks of union status on first pregnancy by following scale factor:
scaleValues <- seq(from = 0.44, to = 1.00, by = 0.08)
Please keep in mind, scaling above result in 64 runs of RiskPaths model, to reduce waiting time we are using only 1024 simulation cases in script below.
Prerequisite Following environmemnt variables are required:
OM_CLOUD_URL=https://your-user.cloud.org
OM_CLOUD_USER=your-login-name
OM_CLOUD_PWD=your-secret-password
If there are no any other options avaliable then you can store above values in .Renviron
file in your HOME
directory.
On Windows HOME directory is: "C:\Users\User Name Here\Documents".
Important Security Warning: .Renviron
file is NOT a safe place to strore login information. Contact your IT security team for better solution.
Important: Clear console and clear history after checking your login name and password.
#
# R integration example using RiskPaths model
# to analyze contribution of delayed union formations
# versus decreased fertility on childlessness
#
# Cloud model run from local user PC
#
# Prerequisite:
#
# 1.
# Cloud user account:
# Following environmemnt variables are required:
# OM_CLOUD_URL - cloud URL, e.g.: https://model.openmpp.org
# OM_CLOUD_USER - user login name, e.g.: demo
# OM_CLOUD_PWD - login password, e.g.: my-secret-password
#
# You can use .Renviron file to define it if there are no any other options avaliable.
# !!! Security warning:
# .Renviron file is not the safe place to store passwords
#
# Script below is using openM++ web-service "oms" in cloud
# to run the model, modify parameters and read output values.
#
# 2.
# omsCommon.R file which contains helper functions.
#
# Place it in your $HOME directory
# on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
# if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
# if you have omsCommon.R in some other location then update path below
# If jsonlite or httr is not installed then do:
# install.packages("jsonlite")
# install.packages("httr")
#
library("jsonlite")
library("httr")
# Include openM++ helper functions from your $HOME directory
#
source("~/omsCommon.R")
# login to cloud workspace
#
lg <- loginToOpenmCloud()
apiUrl <- lg$apiUrl
loginToken <- lg$loginToken
#
# Using RiskPaths model
# to analyze contribution of delayed union formations
# versus decreased fertility on childlessness
#
# Input parameters:
# AgeBaselineForm1: age baseline for first union formation
# UnionStatusPreg1: relative risks of union status on first pregnancy
# Output value:
# T05_CohortFertility: Cohort fertility, expression 1
#
# Model name: RiskPaths
#
# If you have multiple versions of the model with the same name
# then instead of:
# ModelName = "RiskPaths"
# use model digest to identify specific model version, for example:
# ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"
#
md <- "RiskPaths"
# Find first model run to use it as our base run
#
# Parameters AgeBaselineForm1 and UnionStatusPreg1 are varied by this script
# and the rest of parameters we are getting from base model run
#
rsp <- GET(
paste0(
apiUrl, "model/", md, "/run/status/first"
),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest
# get initial values for AgeBaselineForm1 and UnionStatusPreg1 parameters
# by reading it from first model run results
#
rsp <- GET(
paste0(
apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/AgeBaselineForm1/value/start/0/count/0"
),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to get parameter AgeBaselineForm1")
}
ageFirstUnion <- content(rsp)
rsp <- GET(
paste0(
apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/UnionStatusPreg1/value/start/0/count/0"
),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to get parameter UnionStatusPreg1")
}
unionStatusPreg <- content(rsp)
# Create multiple input scenarios and save all of it as our modelling task:
# apply scale in range from 0.44 to 1.0
# to AgeBaselineForm1 and UnionStatusPreg1 parameters
#
# scaleStep <- 0.08 # do 64 model runs
# scaleStep <- 0.5 # use this for quick test
#
scaleStep <- 0.08
scaleValues <- seq(from = 0.44, to = 1.00, by = scaleStep)
nameLst <- c() # input scenario names, automatically generated
for (scaleAgeBy in scaleValues)
{
print(c("Scale age: ", scaleAgeBy))
ag <- ageFirstUnion
for (k in 1:length(ag))
{
ag[[k]]$Value <- ageFirstUnion[[k]]$Value * scaleAgeBy
}
for (scaleUnionBy in scaleValues)
{
un <- unionStatusPreg
un[[1]]$Value <- un[[1]]$Value * scaleUnionBy # change only first two values
un[[2]]$Value <- un[[2]]$Value * scaleUnionBy # of UnionStatusPreg1 parameter
# create new input scenario
# automatically generate unique names for each input scenario
#
pd <- list(
ModelName = md,
Name = "",
BaseRunDigest = firstRunDigest,
IsReadonly = TRUE,
Txt = list(
list(LangCode = "EN", Descr = paste("Scale age:", scaleAgeBy, ", union status", scaleUnionBy)),
list(LangCode = "FR", Descr = paste("Échelle d'âge:", scaleAgeBy, ", statut syndical", scaleUnionBy))
),
Param = list(
list(
Name = "AgeBaselineForm1",
SubCount = 1,
Value = ag,
Txt = list(
list(LangCode = "FR", Note = paste("Mettre à l'échelle l'âge par:", scaleAgeBy))
)
),
list(
Name = "UnionStatusPreg1",
SubCount = 1,
Value = un,
Txt = list(
list(LangCode = "EN", Note = paste("Scale union status by:", scaleAgeBy))
)
)
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)
# create input scenario by submitting request to oms web-service
rsp <- PUT(
paste0(
apiUrl, "workset-create"
),
body = jv,
content_type_json(),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to create input set")
}
jr <- content(rsp)
sn <- jr$Name # name of new input scenario generated by oms web-service
if (is.na(sn) || sn == "") stop("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)
nameLst <- c(nameLst, sn)
}
}
# Create modeling task from all input sets
# automatically generate unique name for the task
#
inpLen <- length(nameLst)
print(paste("Create task from", inpLen, "input scenarios"))
pd <- list(
ModelName = md,
Name = "",
Set = nameLst,
Txt = list(
list(
LangCode = "EN",
Descr = paste("Task to run RiskPaths", inpLen, "times"),
Note = paste("Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step", scaleStep)
)
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)
# create task by submitting request to oms web-service
rsp <- PUT(
paste0(
apiUrl, "task-new"
),
body = jv,
content_type_json(),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to create modeling task")
}
jr <- content(rsp)
taskName <- jr$Name # name of new task generated by oms web-service
if (is.na(taskName) || taskName == "") stop("Fail to create modeling task")
#
# Run RiskPaths with modeling task and wait until task is completed
# It is a sequential run, not parallel.
#
# Running 4 RiskPaths_mpi instances: "root" leader process and 3 computational processes
# each computational process using modelling 4 threads
# root process does only database operations and coordinate child workoload.
#
print(paste("Starting modeling task:", taskName))
# use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))
# prepare model run options
pd <- list(
ModelDigest = md,
Mpi = list(
Np = 5, # MPI cluster: run 5 processes: 4 for model and rott process
IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
Template = "mpi.RiskPaths.template.txt", # MPI cluster: model run tempate
Opts = list(
OpenM.TaskName = taskName,
OpenM.RunStamp = stamp, # use explicit run stamp
Parameter.SimulationCases = "1024", # use 1024 simulation cases to get quick results
OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
OpenM.SubValues = "16", # use 16 sub-values (sub-samples)
OpenM.Threads = "4", # use 4 modeling threads
OpenM.ProgressPercent = "100" # reduce amount of progress messages in the log file
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)
# run modeling task
rsp <- POST(
paste0(
apiUrl, "run"
),
body = jv,
content_type_json(),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to run the model")
}
jr <- content(rsp)
submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run queue
runStamp <- jr$RunStamp # model run stamp: by default empty until model run not started
# wait until task completed
runDigests <- waitForTaskCompleted(taskName, stamp, apiUrl, md, loginToken)
#
# get results of task run, cohort fertility: T05_CohortFertility.Expr1
#
pd <- list(
Name = "T05_CohortFertility",
ValueName = "Expr1",
Size = 0 # read all rows of T05_CohortFertility.Expr1
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)
scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)
runIdx <- 1
for (k in 1:scaleLen)
{
for (j in 1:scaleLen)
{
# for each run digest get T05_CohortFertility.Expr1 value
#
rsp <- POST(
paste0(
apiUrl, "model/", md, "/run/", runDigests[runIdx], "/table/value"
),
body = jv,
content_type_json(),
set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
stop("Failed to get T05_CohortFertility.Expr1")
}
jt <- content(rsp, type = "text", encoding = "UTF-8")
cf <- fromJSON(jt, flatten = TRUE)
# value is not NULL then use it else keep default NA
if (!cf$Page$IsNull)
{
childlessnessMat[k, j] = cf$Page$Value
}
runIdx <- runIdx + 1
}
}
#
# display the results
#
persp(
x = scaleValues,
y = scaleValues,
z = childlessnessMat,
zlim = range(childlessnessMat, na.rm = TRUE),
xlab = "Decreased union formation",
ylab = "Decreased fertility",
zlab = "Childlessness",
theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
col = "lightgreen",
cex.axis = 0.7
)
# Cleanup:
# delete modelling task
# delete all input scenarios
print(paste("Delete", taskName))
rsp <- DELETE(
paste0(
apiUrl, "model/", md, "/task/", taskName
),
set_cookies(jwt_token = loginToken)
)
stop_for_status(rsp, "delete modelling task")
for (sn in nameLst)
{
print(paste("Delete", sn))
rsp <- POST(
paste0(
apiUrl, "model/", md, "/workset/", sn, "/readonly/false"
),
set_cookies(jwt_token = loginToken)
)
stop_for_status(rsp, paste("update read-only status of input set", sn))
rsp <- DELETE(
paste0(
apiUrl, "model/", md, "/workset/", sn
),
set_cookies(jwt_token = loginToken)
)
stop_for_status(rsp, paste("delete input set", sn))
}
- Windows: Quick Start for Model Users
- Windows: Quick Start for Model Developers
- Linux: Quick Start for Model Users
- Linux: Quick Start for Model Developers
- MacOS: Quick Start for Model Users
- MacOS: Quick Start for Model Developers
- Model Run: How to Run the Model
- MIT License, Copyright and Contribution
- Model Code: Programming a model
- Windows: Create and Debug Models
- Linux: Create and Debug Models
- MacOS: Create and Debug Models
- MacOS: Create and Debug Models using Xcode
- Modgen: Convert case-based model to openM++
- Modgen: Convert time-based model to openM++
- Modgen: Convert Modgen models and usage of C++ in openM++ code
- Model Localization: Translation of model messages
- How To: Set Model Parameters and Get Results
- Model Run: How model finds input parameters
- Model Output Expressions
- Model Run Options and ini-file
- OpenM++ Compiler (omc) Run Options
- OpenM++ ini-file format
- UI: How to start user interface
- UI: openM++ user interface
- UI: Create new or edit scenario
- UI: Upload input scenario or parameters
- UI: Run the Model
- UI: Use ini-files or CSV parameter files
- UI: Compare model run results
- UI: Aggregate and Compare Microdata
- UI: Filter run results by value
- UI: Disk space usage and cleanup
- UI Localization: Translation of openM++
- Authored Model Documentation
- Built-in Attributes
- Censor Event Time
- Create Import Set
- Derived Tables
- Entity Attributes in C++
- Entity Function Hooks
- Entity Member Packing
- Entity Tables
- Enumerations
- Events
- Event Trace
- External Names
- Generated Model Documentation
- Groups
- Illustrative Model
Align1
- Lifecycle Attributes
- Local Random Streams
- Memory Use
- Microdata Output
- Model Code
- Model Documentation
- Model Languages
- Model Localization
- Model Metrics Report
- Model Resource Use
- Model Symbols
- Parameter and Table Display and Content
- Population Size and Scaling
- Screened Tables
- Symbol Labels and Notes
- Tables
- Test Models
- Time-like and Event-like Attributes
- Use Modules
- Weighted Tabulation
- File-based Parameter Values
- Oms: openM++ web-service
- Oms: openM++ web-service API
- Oms: How to prepare model input parameters
- Oms: Cloud and model runs queue
- Use R to save output table into CSV file
- Use R to save output table into Excel
- Run model from R: simple loop in cloud
- Run RiskPaths model from R: advanced run in cloud
- Run RiskPaths model in cloud from local PC
- Run model from R and save results in CSV file
- Run model from R: simple loop over model parameter
- Run RiskPaths model from R: advanced parameters scaling
- Run model from Python: simple loop over model parameter
- Run RiskPaths model from Python: advanced parameters scaling
- Windows: Use Docker to get latest version of OpenM++
- Linux: Use Docker to get latest version of OpenM++
- RedHat 8: Use Docker to get latest version of OpenM++
- Quick Start for OpenM++ Developers
- Setup Development Environment
- 2018, June: OpenM++ HPC cluster: Test Lab
- Development Notes: Defines, UTF-8, Databases, etc.
- 2012, December: OpenM++ Design
- 2012, December: OpenM++ Model Architecture, December 2012
- 2012, December: Roadmap, Phase 1
- 2013, May: Prototype version
- 2013, September: Alpha version
- 2014, March: Project Status, Phase 1 completed
- 2016, December: Task List
- 2017, January: Design Notes. Subsample As Parameter problem. Completed
GET Model Metadata
- GET model list
- GET model list including text (description and notes)
- GET model definition metadata
- GET model metadata including text (description and notes)
- GET model metadata including text in all languages
GET Model Extras
GET Model Run results metadata
- GET list of model runs
- GET list of model runs including text (description and notes)
- GET status of model run
- GET status of model run list
- GET status of first model run
- GET status of last model run
- GET status of last completed model run
- GET model run metadata and status
- GET model run including text (description and notes)
- GET model run including text in all languages
GET Model Workset metadata: set of input parameters
- GET list of model worksets
- GET list of model worksets including text (description and notes)
- GET workset status
- GET model default workset status
- GET workset including text (description and notes)
- GET workset including text in all languages
Read Parameters, Output Tables or Microdata values
- Read parameter values from workset
- Read parameter values from workset (enum id's)
- Read parameter values from model run
- Read parameter values from model run (enum id's)
- Read output table values from model run
- Read output table values from model run (enum id's)
- Read output table calculated values from model run
- Read output table calculated values from model run (enum id's)
- Read output table values and compare model runs
- Read output table values and compare model runs (enun id's)
- Read microdata values from model run
- Read microdata values from model run (enum id's)
- Read aggregated microdata from model run
- Read aggregated microdata from model run (enum id's)
- Read microdata run comparison
- Read microdata run comparison (enum id's)
GET Parameters, Output Tables or Microdata values
- GET parameter values from workset
- GET parameter values from model run
- GET output table expression(s) from model run
- GET output table calculated expression(s) from model run
- GET output table values and compare model runs
- GET output table accumulator(s) from model run
- GET output table all accumulators from model run
- GET microdata values from model run
- GET aggregated microdata from model run
- GET microdata run comparison
GET Parameters, Output Tables or Microdata as CSV
- GET csv parameter values from workset
- GET csv parameter values from workset (enum id's)
- GET csv parameter values from model run
- GET csv parameter values from model run (enum id's)
- GET csv output table expressions from model run
- GET csv output table expressions from model run (enum id's)
- GET csv output table accumulators from model run
- GET csv output table accumulators from model run (enum id's)
- GET csv output table all accumulators from model run
- GET csv output table all accumulators from model run (enum id's)
- GET csv calculated table expressions from model run
- GET csv calculated table expressions from model run (enum id's)
- GET csv model runs comparison table expressions
- GET csv model runs comparison table expressions (enum id's)
- GET csv microdata values from model run
- GET csv microdata values from model run (enum id's)
- GET csv aggregated microdata from model run
- GET csv aggregated microdata from model run (enum id's)
- GET csv microdata run comparison
- GET csv microdata run comparison (enum id's)
GET Modeling Task metadata and task run history
- GET list of modeling tasks
- GET list of modeling tasks including text (description and notes)
- GET modeling task input worksets
- GET modeling task run history
- GET status of modeling task run
- GET status of modeling task run list
- GET status of modeling task first run
- GET status of modeling task last run
- GET status of modeling task last completed run
- GET modeling task including text (description and notes)
- GET modeling task text in all languages
Update Model Profile: set of key-value options
- PATCH create or replace profile
- DELETE profile
- POST create or replace profile option
- DELETE profile option
Update Model Workset: set of input parameters
- POST update workset read-only status
- PUT create new workset
- PUT create or replace workset
- PATCH create or merge workset
- DELETE workset
- POST delete multiple worksets
- DELETE parameter from workset
- PATCH update workset parameter values
- PATCH update workset parameter values (enum id's)
- PATCH update workset parameter(s) value notes
- PUT copy parameter from model run into workset
- PATCH merge parameter from model run into workset
- PUT copy parameter from workset to another
- PATCH merge parameter from workset to another
Update Model Runs
- PATCH update model run text (description and notes)
- DELETE model run
- POST delete model runs
- PATCH update run parameter(s) value notes
Update Modeling Tasks
Run Models: run models and monitor progress
Download model, model run results or input parameters
- GET download log file
- GET model download log files
- GET all download log files
- GET download files tree
- POST initiate entire model download
- POST initiate model run download
- POST initiate model workset download
- DELETE download files
- DELETE all download files
Upload model runs or worksets (input scenarios)
- GET upload log file
- GET all upload log files for the model
- GET all upload log files
- GET upload files tree
- POST initiate model run upload
- POST initiate workset upload
- DELETE upload files
- DELETE all upload files
Download and upload user files
- GET user files tree
- POST upload to user files
- PUT create user files folder
- DELETE file or folder from user files
- DELETE all user files
User: manage user settings
Model run jobs and service state
- GET service configuration
- GET job service state
- GET disk usage state
- POST refresh disk space usage info
- GET state of active model run job
- GET state of model run job from queue
- GET state of model run job from history
- PUT model run job into other queue position
- DELETE state of model run job from history
Administrative: manage web-service state
- POST a request to refresh models catalog
- POST a request to close models catalog
- POST a request to close model database
- POST a request to open database file
- POST a request to cleanup database file
- GET the list of database cleanup log(s)
- GET database cleanup log file(s)
- POST a request to pause model run queue
- POST a request to pause all model runs queue
- PUT a request to shutdown web-service