Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor g_forest #1158

Merged
merged 31 commits into from
Dec 20, 2023
Merged

Refactor g_forest #1158

merged 31 commits into from
Dec 20, 2023

Conversation

edelarua
Copy link
Contributor

@edelarua edelarua commented Dec 8, 2023

Pull Request

Part of #1109

g_forest creates a ggplot object instead of a grob object.

@edelarua edelarua added the sme label Dec 8, 2023
Copy link
Contributor

github-actions bot commented Dec 8, 2023

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      68       2  97.06%   78-79
R/abnormal_by_marked.R                        55       5  90.91%   78-82
R/abnormal_by_worst_grade_worsen.R           116       3  97.41%   240-242
R/abnormal_by_worst_grade.R                   60       0  100.00%
R/abnormal.R                                  43       0  100.00%
R/analyze_variables.R                        190      10  94.74%   489-490, 506, 530, 686-687, 692-693, 711-712
R/analyze_vars_in_cols.R                     179      35  80.45%   168-169, 184, 207-212, 227, 241-242, 250-258, 264-270, 349-355
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        124      17  86.29%   131-135, 247, 325-334, 389-390, 396
R/control_incidence_rate.R                    20       8  60.00%   32-35, 38-41
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          50       1  98.00%   67
R/count_missed_doses.R                        34       0  100.00%
R/count_occurrences_by_grade.R               107       4  96.26%   144-146, 149
R/count_occurrences.R                        115       1  99.13%   108
R/count_patients_events_in_cols.R             67       1  98.51%   53
R/count_patients_with_event.R                 47       0  100.00%
R/count_patients_with_flags.R                 58       4  93.10%   56-57, 62-63
R/count_values.R                              27       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 239, 254, 262, 268-269
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            173      40  76.88%   235-266, 326-328, 339, 360-397
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  50       1  98.00%   63
R/estimate_proportion.R                      205      12  94.15%   78-85, 89, 94, 315, 482, 588
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     181       3  98.34%   145, 155, 280
R/g_forest.R                                 571     412  27.85%   183-186, 189-192, 195-201, 204-207, 210-213, 240, 252-255, 260-261, 277, 287-290, 337-340, 347, 416, 493-1013
R/g_lineplot.R                               206      34  83.50%   168, 181, 210, 236-239, 315-322, 340-341, 347-357, 449, 455, 457, 499-500, 504-505
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    45       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  57       2  96.49%   77-78
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           76       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        67       3  95.52%   68-69, 95
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           81       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/imputation_rule.R                           17       2  88.24%   54-55
R/incidence_rate.R                            96       7  92.71%   44-51
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        688      65  90.55%   236-239, 279-314, 323-327, 538, 725-727, 735-737, 769-770, 943-946, 1169, 1495-1506
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               109       0  100.00%
R/prop_diff_test.R                            91       0  100.00%
R/prop_diff.R                                265      16  93.96%   62-65, 97, 282-289, 432, 492, 597
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             61       0  100.00%
R/response_subgroups.R                       185       4  97.84%   267, 315-317
R/riskdiff.R                                  59       7  88.14%   102-105, 114, 124-125
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       3  94.92%   73-74, 129
R/summarize_ancova.R                         101       1  99.01%   172
R/summarize_change.R                          30       0  100.00%
R/summarize_colvars.R                         13       2  84.62%   72-73
R/summarize_coxreg.R                         178       6  96.63%   201-202, 209, 346-347, 442
R/summarize_glm_count.R                      170      29  82.94%   160, 164-214, 259-260
R/summarize_num_patients.R                    99       9  90.91%   108-110, 160-161, 252-257
R/summarize_patients_exposure_in_cols.R       96       1  98.96%   42
R/survival_biomarkers_subgroups.R             63       0  100.00%
R/survival_coxph_pairwise.R                   76       9  88.16%   51-59
R/survival_duration_subgroups.R              184       0  100.00%
R/survival_time.R                             79       0  100.00%
R/survival_timepoint.R                       113       7  93.81%   120-126
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       136       4  97.06%   72, 577-580
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_ggplot.R                              72       0  100.00%
R/utils_grid.R                               111       5  95.50%   149, 258-264
R/utils_rtables.R                            100       9  91.00%   39, 46, 51, 58-62, 403-404
R/utils_split_funs.R                          52       2  96.15%   81, 93
R/utils.R                                    137      10  92.70%   92, 94, 98, 118, 121, 124, 128, 137-138, 311
TOTAL                                      10106     916  90.94%

Diff against main

Filename            Stmts    Miss  Cover
----------------  -------  ------  --------
R/g_forest.R         +133    +391  -67.36%
R/utils_ggplot.R       +4     -68  +100.00%
TOTAL                +137    +323  -3.12%

Results for commit: 469d2b7

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

github-actions bot commented Dec 8, 2023

Unit Tests Summary

       1 files       82 suites   1m 5s ⏱️
   808 tests    782 ✔️   26 💤 0
1 710 runs  1 059 ✔️ 651 💤 0

Results for commit 469d2b7.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Dec 8, 2023

Unit Test Performance Difference

Test Suite $Status$ Time on main $±Time$ $±Tests$ $±Skipped$ $±Failures$ $±Errors$
g_forest 💔 $1.03$ $+1.01$ $+1$ $+1$ $0$ $0$
Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
g_forest 👶 $+0.70$ g_forest_as_list_argument_works
utils_ggplot 👶 $+0.25$ rtable2gg_works_as_expected
utils_ggplot 👶 $+0.52$ rtable2gg_works_with_multiple_column_splits
utils_ggplot 💀 $0.12$ $-0.12$ rtables2gg_works_as_expected
utils_ggplot 💀 $0.10$ $-0.10$ rtables2gg_works_with_multiple_column_splits

Results for commit 8aa4253

♻️ This comment has been updated with latest results.

Copy link
Contributor

@shajoezhu shajoezhu left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks really good! Thanks @edelarua

@shajoezhu shajoezhu self-assigned this Dec 13, 2023
@shajoezhu
Copy link
Contributor

hi @edelarua , can you introduce this changes in tern.gee and tern.mmrm as well please. thanks!

@edelarua
Copy link
Contributor Author

hi @edelarua , can you introduce this changes in tern.gee and tern.mmrm as well please. thanks!

Hi @shajoezhu,
tern.gee doesn't use g_forest anywhere currently. I checked tern.mmrm and no changes are needed, we'll just have to update the tern version dependency at some point to use the new version. I will check if chevron needs updates tomorrow!

@shajoezhu
Copy link
Contributor

shajoezhu commented Dec 14, 2023

Hi @edelarua , it was requested before, but held it because i was wanted to change the gforest implmentation, and you did it! :)

we can create another issue, and follow up on this again, basically would be the same as from tern.mmrm

@shajoezhu
Copy link
Contributor

Downstream, we will need to update scda.test and tlg.c as well. Thanks!

@shajoezhu shajoezhu merged commit ccbc10c into main Dec 20, 2023
24 checks passed
@shajoezhu shajoezhu deleted the 1109_refactor_g_forest@main branch December 20, 2023 04:19
shajoezhu pushed a commit to insightsengineering/scda.test that referenced this pull request Dec 20, 2023
Closes #86 

Merge after insightsengineering/tern#1158

---------

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
Melkiades pushed a commit to insightsengineering/tlg-catalog that referenced this pull request Dec 20, 2023
Closes #182 

Merge after insightsengineering/tern#1158

This should standardize the generation of graph snapshots across
different systems and hopefully fix the failing integration tests for
graph snapshot differences.

Note: kmg01 snapshots will be fixed after `g_km` is refactored.

---------

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
BFalquet pushed a commit to insightsengineering/chevron that referenced this pull request Feb 5, 2024
Closes #715 

Merge after chevron release and
insightsengineering/tern#1158

---------

Signed-off-by: Emily de la Rua <[email protected]>
Co-authored-by: benoit <[email protected]>
Co-authored-by: Liming <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants