Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Vertex/edge cutting #216

Merged
merged 8 commits into from
Aug 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 93 additions & 1 deletion pyzx/simulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

import numpy as np

from .utils import EdgeType, VertexType, toggle_edge
from .utils import EdgeType, VertexType, toggle_vertex, toggle_edge, ave_pos
from . import simplify
from .circuit import Circuit
from .graph import Graph
Expand Down Expand Up @@ -482,3 +482,95 @@ def replace_1_1(g: BaseGraph[VT,ET], verts: List[VT]) -> BaseGraph[VT,ET]:
g.add_edge(g.edge(verts[0],w),EdgeType.HADAMARD)
for v in verts: g.add_to_phase(v,Fraction(-1,4))
return g

def cut_vertex(g,v):
"""Applies the ``cutting'' decomposition to a vertex, as used in, for example: https://arxiv.org/pdf/2403.10964."""
g = g.clone()
g0 = g.clone()
g1 = g.clone()
g0.remove_vertex(v)
g1.remove_vertex(v)

n = len(g.neighbors(v))
g0.scalar.add_power(-n)
g1.scalar.add_power(-n)
g1.scalar.add_phase(g.phase(v)) # account for e^(i*pi*alpha) on right branch

vtype = toggle_vertex(g.type(v))

for i in g.neighbors(v):
etype = g.edge_type((v,i)) # maintain edge type
qubit = ave_pos(g.qubit(v),g.qubit(i),1/2)
row = ave_pos(g.row(v),g.row(i),1/2)

newV = g0.add_vertex(vtype,qubit,row,0) # add and connect the new vertices
g0.add_edge((newV,i),etype)
newV = g1.add_vertex(vtype,qubit,row,1)
g1.add_edge((newV,i),etype)

return (g0,g1)

def cut_edge(g,e,ty=1):
"""Applies the ``cutting'' decomposition to an edge, as used in, for example: https://arxiv.org/pdf/2403.10964. The type ty decides whether to cut with Z- branches or X- branches."""
g = g.clone()
g0 = g.clone()
g1 = g.clone()
g0.remove_edge(e)
g1.remove_edge(e)

etype = g.edge_type(e)

g0.scalar.add_power(-2)
g1.scalar.add_power(-2)

x0,x1 = g.row(e[0]), g.row(e[1])
y0,y1 = g.qubit(e[0]), g.qubit(e[1])

qubit1 = ave_pos(y0,y1,1/3)
row1 = ave_pos(x0,x1,1/3)
qubit2 = ave_pos(y0,y1,2/3)
row2 = ave_pos(x0,x1,2/3)

v = g0.add_vertex(ty=ty,qubit=qubit1,row=row1,phase=0)
g0.add_edge((v,e[0]),1)
v = g0.add_vertex(ty=ty,qubit=qubit2,row=row2,phase=0)
g0.add_edge((v,e[1]),etype)

v = g1.add_vertex(ty=ty,qubit=qubit1,row=row1,phase=1)
g1.add_edge((v,e[0]),1)
v = g1.add_vertex(ty=ty,qubit=qubit2,row=row2,phase=1)
g1.add_edge((v,e[1]),etype)

return (g0,g1)

def cut_wishbone(g,v,neighs,ph):
"""Applies the ``wishbone cut'' (or ``separator cut'') decomposition to vertex v of graph g, pulling out the neighbours ``neighs'' and a phase ``ph'', as used in: [PAPER UPCOMING]."""
g = g.clone()

for i in neighs:
if not i in g.neighbors(v):
raise ValueError("Attempted illegal wishbone cut. Vertex " + str(i) + " is not a neighbor of target vertex " + str(v) + ".")

neighs_left = set(g.neighbors(v)).symmetric_difference(neighs)
neighs_right = neighs

phase_left = g.phase(v) - ph
phase_right = ph

v_left = g.add_vertex(qubit=g.qubit(v),row=g.row(v)-0.5,ty=g.type(v),phase=phase_left)
v_right = g.add_vertex(qubit=g.qubit(v),row=g.row(v)+0.5,ty=g.type(v),phase=phase_right)

for i in neighs_left: g.add_edge((v_left,i),g.edge_type((v,i)))
for i in neighs_right: g.add_edge((v_right,i),g.edge_type((v,i)))

g.remove_vertex(v)

#--

gLeft = g.clone()
gRight = g.clone()

gRight.add_to_phase(v_left,1)
gRight.add_to_phase(v_right,1)

return (gLeft,gRight)
3 changes: 3 additions & 0 deletions pyzx/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -252,3 +252,6 @@ def get_z_box_label(g, v):
def set_z_box_label(g, v, label):
assert g.type(v) == VertexType.Z_BOX
g.set_vdata(v, 'label', label)

# Return position 'perc'%-distance between 2 points:
def ave_pos(a,b,perc=1/2): return (abs(a-b))*(perc) + min(a,b)
39 changes: 38 additions & 1 deletion tests/test_simulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,21 +17,32 @@

import unittest
import sys
import random
from types import ModuleType
from typing import Optional

if __name__ == '__main__':
sys.path.append('..')
sys.path.append('.')
from pyzx.circuit import Circuit
from pyzx.simulate import replace_magic_states
from pyzx.simulate import replace_magic_states, cut_vertex, cut_edge
from pyzx.generate import cliffords
from pyzx.simplify import full_reduce

np: Optional[ModuleType]
try:
import numpy as np
except ImportError:
np = None

def rand_graph(qubits=5,depth=10):
g = cliffords(qubits,depth)
g.apply_state('0'*qubits)
g.apply_effect('0'*qubits)
return g

def round_complex(scalar,decimal_places):
return round(scalar.real,decimal_places) + round(scalar.imag,decimal_places)*1j

@unittest.skipUnless(np, "numpy needs to be installed for this to run")
class TestSimulate(unittest.TestCase):
Expand All @@ -43,6 +54,32 @@ def test_magic_state_decomposition_is_correct(self):
g = c.to_graph()
gsum = replace_magic_states(g)
self.assertTrue(np.allclose(g.to_tensor(), gsum.to_tensor()))

def test_vertex_cut(self,repeats=20):
for i in range(1,repeats):
g = rand_graph() # generate random Clifford graph
v_cut = random.randrange(len(g.vertices()))
g0,g1 = cut_vertex(g,v_cut) # apply random vertex cut

for g_i in (g,g0,g1): full_reduce(g_i)

scal = round_complex(g.scalar.to_number(),3) # the scalar from fully reducing g
scalCut = round_complex(g0.scalar.to_number()+g1.scalar.to_number(),3) # the sum of scalars from the cut graph
assert(scal == scalCut)

def test_edge_cut(self,repeats=20):
for i in range(1,repeats):
g = rand_graph() # generate random Clifford graph
rand_v = random.randrange(len(g.vertices()))
rand_neigh = list(g.neighbors(rand_v))[random.randrange(len(g.neighbors(rand_v)))]
e_cut = (rand_v,rand_neigh) # apply random edge cut

g0,g1 = cut_edge(g,e_cut)
for g_i in (g,g0,g1): full_reduce(g_i)

scal = round_complex(g.scalar.to_number(),3) # the scalar from fully reducing g
scalCut = round_complex(g0.scalar.to_number()+g1.scalar.to_number(),3) # the sum of scalars from the cut graph
assert(scal == scalCut)


if __name__ == '__main__':
Expand Down
Loading