Skip to content
forked from wencolani/IterE

Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. (WWW'19)

Notifications You must be signed in to change notification settings

sylviawangfr/IterE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IterE

INTRODUCTION

Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. (WWW'19)

RUN

python3 main.py --device /gpu --datadir ./datasets/FB15k-237-sparse --batch_size 2048 --dim 200 --test_batch_size 50 --max_epoch 100 --test_per_iter 100 --num_test 3000 --axiom_weight 0.1 --optimize Adam --lr 0.001 --neg_samples 2 --regularizer_weight 0.00001 --save_dir ./save/0825AE1 --update_axiom_per 1 --axiom_probability 0.95 --triple_generator 3

DATASET

There are four sparse datasets used in this paper, WN18-sparse, FB15k-sparse WN18-sparse and FB15k-237-sparse, which are in folder ./data. We provide the axiom pool version for each dataset together with their entailments.

We also provide the code for generating axiom pools, please refer to axiomPools.py if you are interested in axiom pool genration or apply them to other datasets.

CITE

If the codes help you or the paper inspire your, please cite following paper:

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein and Huajun Chen. Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. In proceedings of the 2019 World Wide Web Conference (WWW'19).

About

Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning. (WWW'19)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%