forked from wencolani/IterE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxiomPools.py
175 lines (156 loc) · 5.56 KB
/
axiomPools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
from collections import defaultdict
import pickle
import os
import timeit
import argparse
# =========== NOTES ======================
# This riginal version should work if you
# put it inside the dataset dictionary
# ========================================
# input: triple file
# output: triples [(h,r,t),...]
def readtrainfile(file):
triples = []
hr_t = defaultdict(set)
ht_r = defaultdict(set)
h_t = defaultdict(set)
t_h = defaultdict(set)
r_hrt = defaultdict(list)
f = open(file, 'r')
for line in f.readlines():
h, t, r = line.strip().split('\t')
#assert len(line_list) == 3
triples.append((h,r,t))
hr_t[(h,r)].add(t)
ht_r[(h,t)].add(r)
h_t[h].add(t)
t_h[t].add(h)
r_hrt[r].append((h,r,t))
return triples, hr_t, ht_r, h_t, t_h, r_hrt
def pickledump(*inputs):
num, reflexive, symmetric, transitive, inverse, equivalent, subProperty, inferenceChain = inputs
with open('./output/reflexive_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(reflexive, f)
with open('./output/symmetric_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(symmetric, f)
with open('./output/transitive_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(transitive, f)
with open('./output/inverse_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(inverse, f)
with open('./output/equivalent_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(equivalent, f)
with open('./output/subProperty_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(subProperty, f)
with open('./output/inferenceChain_'+str(num)+'.pickle', 'wb') as f:
pickle.dump(inferenceChain, f)
# input: triples
# output: possible axioms for each type
# Axioms(dict): {inverse:{...},symmetric: {...}, ... }
def generateAxioms(triple_data, p, g, dataset_dir):
num_samples = 100
triples, hr_t, ht_r, h_t, t_h, r_hrt = triple_data
num_axiom_types = 7
reflexive, symmetric, transitive, equivalent, inverse, \
subProperty, inferenceChain = [ set() for i in range(num_axiom_types)]
count = 0
for rel in r_hrt.keys():
# the number of triples about r to generate axioms
N = len(r_hrt[rel])
pN = p*N
num_samples = round(N - N*pow(1-g,1/pN))
np.random.shuffle(r_hrt[rel])
num_triples = min(num_samples, len(r_hrt[rel]))
print("num_triples", num_triples)
hrts = r_hrt[rel][:num_triples]
if count % 1 == 0:
print(
'num:%d / reflexive:%d / symmetric:%d / transitive:%d / inverse:%d / equivalent: %d / subProperty: %d / inferenceChain: %d'
% (
count, len(reflexive), len(symmetric), len(transitive), len(inverse), len(equivalent), len(subProperty),
len(inferenceChain)))
'''
if count % 100 == 0:
pickledump(count, reflexive, symmetric, transitive, inverse, equivalent, subProperty, inferenceChain)
'''
count_triples = 0
for h,r,t in hrts:
print(count_triples, end='\r')
count_triples += 1
# 1 relexive
if h == t:
reflexive.add((r,))
# 2 symmetric
if (t,r,h) in r_hrt[r]:
symmetric.add((r,))
# 3 transitive
for t_tmp in hr_t[(h, r)]:
if t_tmp != t and (t_tmp, r, t) in r_hrt[r]:
transitive.add((r,))
# 4 equivalent and 6 subProperty
for r_tmp in ht_r[(h, t)]:
if r_tmp != r:
equivalent.add((r, r_tmp))
subProperty.add((r, r_tmp))
# 5 inverse
if (t, h) in ht_r.keys():
for r_tmp in ht_r[(t, h)]:
inverse.add((r, r_tmp))
# 7 inferenceChain
# h --> e --> t
h_e = h_t[h]
t_e = t_h[t]
e_common = h_e.intersection(t_e)
for e in e_common:
for r1 in ht_r[(h, e)]:
for r2 in ht_r[(e, t)]:
inferenceChain.add((r, r1, r2))
count += 1
'''
if count > 3:
break
'''
print('finish processing')
print('write reflexive file')
writefile(reflexive, os.path.join(dataset_dir, 'axiom_pool/axiom_reflexive.txt'), 1)
print('write symmetric file')
writefile(symmetric, os.path.join(dataset_dir, 'axiom_pool/axiom_symmetric.txt'), 1)
print('write transitive file')
writefile(transitive, os.path.join(dataset_dir, 'axiom_pool/axiom_transitive.txt'), 1)
print('write inverse file')
writefile(inverse, os.path.join(dataset_dir, 'axiom_pool/axiom_inverse.txt'), 2)
print('write equivalent file')
writefile(equivalent, os.path.join(dataset_dir, 'axiom_pool/axiom_equivalent.txt'), 2)
print('write subProperty file')
writefile(subProperty, os.path.join(dataset_dir, 'axiom_pool/axiom_subProperty.txt'), 2)
print('write inferenceChain file')
writefile(inferenceChain, os.path.join(dataset_dir, 'axiom_pool/axiom_inferenceChain.txt'), 3)
def writefile(axioms, file, num_element):
with open(file, 'w') as f:
for obj in axioms:
for i in range(num_element):
f.write(obj[i])
if i == num_element-1:
f.write('\n')
else:
f.write('\t')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Experiment setup')
# misc(short for miscellaneous)
parser.add_argument('--dataset_dir', dest='dataset_dir', type=str, default='./dataset/FB15k')
parser.add_argument('--train_file', dest='train_file', type=str, default='train.txt')
parser.add_argument('--axiom_probability', dest='axiom_probability', type=float, default=0.5)
parser.add_argument('--axiom_proportion', dest='axiom_proportion', type=float, default=0.95)
# dest for parser
option = parser.parse_args()
file_train = os.path.join(option.dataset_dir,option.train_file)
start = timeit.default_timer()
# keep the axioms with probability larger than p
p = option.axiom_probability
# the probability of keep axioms when generating
g = option.axiom_proportion
# triples: [(head, rel, tail), ...]
triple_data = readtrainfile(file_train)
generateAxioms(triple_data, p, g, option.dataset_dir)
end = timeit.default_timer()
print('cost time:', end-start)