Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GKR implementation of Logup lookups #623

Merged
merged 1 commit into from
Jul 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
331 changes: 323 additions & 8 deletions crates/prover/src/core/backend/cpu/lookups/gkr.rs
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
use num_traits::Zero;
use std::ops::{Add, Index};

use num_traits::{One, Zero};

use crate::core::backend::CpuBackend;
use crate::core::fields::m31::BaseField;
use crate::core::fields::qm31::SecureField;
use crate::core::fields::Field;
use crate::core::fields::{ExtensionOf, Field};
use crate::core::lookups::gkr_prover::{
correct_sum_as_poly_in_first_variable, EqEvals, GkrMultivariatePolyOracle, GkrOps, Layer,
};
use crate::core::lookups::mle::Mle;
use crate::core::lookups::mle::{Mle, MleOps};
use crate::core::lookups::sumcheck::MultivariatePolyOracle;
use crate::core::lookups::utils::UnivariatePoly;
use crate::core::lookups::utils::{Fraction, UnivariatePoly};

impl GkrOps for CpuBackend {
fn gen_eq_evals(y: &[SecureField], v: SecureField) -> Mle<Self, SecureField> {
Expand All @@ -18,7 +21,17 @@ impl GkrOps for CpuBackend {
fn next_layer(layer: &Layer<Self>) -> Layer<Self> {
match layer {
Layer::GrandProduct(layer) => next_grand_product_layer(layer),
Layer::_LogUp(_) => todo!(),
Layer::LogUpGeneric {
numerators,
denominators,
} => next_logup_layer(MleExpr::Mle(numerators), denominators),
Layer::LogUpMultiplicities {
numerators,
denominators,
} => next_logup_layer(MleExpr::Mle(numerators), denominators),
Layer::LogUpSingles { denominators } => {
next_logup_layer(MleExpr::Constant(BaseField::one()), denominators)
}
}
}

Expand All @@ -32,11 +45,22 @@ impl GkrOps for CpuBackend {
let eq_evals = h.eq_evals;
// Vector used to generate evaluations of `eq(x, y)` for `x` in the boolean hypercube.
let y = eq_evals.y();
let lambda = h.lambda;
let input_layer = &h.input_layer;

let (mut eval_at_0, mut eval_at_2) = match input_layer {
Layer::GrandProduct(col) => eval_grand_product_sum(eq_evals, col, n_terms),
Layer::_LogUp(_) => todo!(),
Layer::LogUpGeneric {
numerators,
denominators,
} => eval_logup_sum(eq_evals, numerators, denominators, n_terms, lambda),
Layer::LogUpMultiplicities {
numerators,
denominators,
} => eval_logup_sum(eq_evals, numerators, denominators, n_terms, lambda),
Layer::LogUpSingles { denominators } => {
eval_logup_singles_sum(eq_evals, denominators, n_terms, lambda)
}
};

eval_at_0 *= h.eq_fixed_var_correction;
Expand Down Expand Up @@ -79,6 +103,134 @@ fn eval_grand_product_sum(
(eval_at_0, eval_at_2)
}

/// Evaluates `sum_x eq(({0}^|r|, 0, x), y) * (inp_numer(r, t, x, 0) * inp_denom(r, t, x, 1) +
/// inp_numer(r, t, x, 1) * inp_denom(r, t, x, 0) + lambda * inp_denom(r, t, x, 0) * inp_denom(r, t,
/// x, 1))` at `t=0` and `t=2`.
///
/// Output of the form: `(eval_at_0, eval_at_2)`.
fn eval_logup_sum<F: Field>(
eq_evals: &EqEvals<CpuBackend>,
input_numerators: &Mle<CpuBackend, F>,
input_denominators: &Mle<CpuBackend, SecureField>,
n_terms: usize,
lambda: SecureField,
) -> (SecureField, SecureField)
where
SecureField: ExtensionOf<F> + Field,
{
let mut eval_at_0 = SecureField::zero();
let mut eval_at_2 = SecureField::zero();

for i in 0..n_terms {
// Input polynomials at points `(r, {0, 1, 2}, bits(i), {0, 1})`.
let inp_numer_at_r0i0 = input_numerators[i * 2];
let inp_denom_at_r0i0 = input_denominators[i * 2];
let inp_numer_at_r0i1 = input_numerators[i * 2 + 1];
let inp_denom_at_r0i1 = input_denominators[i * 2 + 1];
let inp_numer_at_r1i0 = input_numerators[(n_terms + i) * 2];
let inp_denom_at_r1i0 = input_denominators[(n_terms + i) * 2];
let inp_numer_at_r1i1 = input_numerators[(n_terms + i) * 2 + 1];
let inp_denom_at_r1i1 = input_denominators[(n_terms + i) * 2 + 1];
// Note `inp_denom(r, t, x) = eq(t, 0) * inp_denom(r, 0, x) + eq(t, 1) * inp_denom(r, 1, x)`
// => `inp_denom(r, 2, x) = 2 * inp_denom(r, 1, x) - inp_denom(r, 0, x)`
let inp_numer_at_r2i0 = inp_numer_at_r1i0.double() - inp_numer_at_r0i0;
let inp_denom_at_r2i0 = inp_denom_at_r1i0.double() - inp_denom_at_r0i0;
let inp_numer_at_r2i1 = inp_numer_at_r1i1.double() - inp_numer_at_r0i1;
let inp_denom_at_r2i1 = inp_denom_at_r1i1.double() - inp_denom_at_r0i1;

// Fraction addition polynomials:
// - `numer(x) = inp_numer(x, 0) * inp_denom(x, 1) + inp_numer(x, 1) * inp_denom(x, 0)`
// - `denom(x) = inp_denom(x, 1) * inp_denom(x, 0)`
// at points `(r, {0, 2}, bits(i))`.
let Fraction {
numerator: numer_at_r0i,
denominator: denom_at_r0i,
} = Fraction::new(inp_numer_at_r0i0, inp_denom_at_r0i0)
+ Fraction::new(inp_numer_at_r0i1, inp_denom_at_r0i1);
let Fraction {
numerator: numer_at_r2i,
denominator: denom_at_r2i,
} = Fraction::new(inp_numer_at_r2i0, inp_denom_at_r2i0)
+ Fraction::new(inp_numer_at_r2i1, inp_denom_at_r2i1);

let eq_eval_at_0i = eq_evals[i];
eval_at_0 += eq_eval_at_0i * (numer_at_r0i + lambda * denom_at_r0i);
eval_at_2 += eq_eval_at_0i * (numer_at_r2i + lambda * denom_at_r2i);
}

(eval_at_0, eval_at_2)
}

/// Evaluates `sum_x eq(({0}^|r|, 0, x), y) * (inp_denom(r, t, x, 1) + inp_denom(r, t, x, 0) +
/// lambda * inp_denom(r, t, x, 0) * inp_denom(r, t, x, 1))` at `t=0` and `t=2`.
///
/// Output of the form: `(eval_at_0, eval_at_2)`.
fn eval_logup_singles_sum(
eq_evals: &EqEvals<CpuBackend>,
input_denominators: &Mle<CpuBackend, SecureField>,
n_terms: usize,
lambda: SecureField,
) -> (SecureField, SecureField) {
/// Represents the fraction `1 / x`
struct Reciprocal {
x: SecureField,
}

impl Add for Reciprocal {
type Output = Fraction<SecureField>;

fn add(self, rhs: Self) -> Fraction<SecureField> {
// `1/a + 1/b = (a + b)/(a * b)`
Fraction {
numerator: self.x + rhs.x,
denominator: self.x * rhs.x,
}
}
}

let mut eval_at_0 = SecureField::zero();
let mut eval_at_2 = SecureField::zero();

for i in 0..n_terms {
// Input polynomial at points `(r, {0, 1, 2}, bits(i), {0, 1})`.
let inp_denom_at_r0i0 = input_denominators[i * 2];
let inp_denom_at_r0i1 = input_denominators[i * 2 + 1];
let inp_denom_at_r1i0 = input_denominators[(n_terms + i) * 2];
let inp_denom_at_r1i1 = input_denominators[(n_terms + i) * 2 + 1];
// Note `inp_denom(r, t, x) = eq(t, 0) * inp_denom(r, 0, x) + eq(t, 1) * inp_denom(r, 1, x)`
// => `inp_denom(r, 2, x) = 2 * inp_denom(r, 1, x) - inp_denom(r, 0, x)`
let inp_denom_at_r2i0 = inp_denom_at_r1i0.double() - inp_denom_at_r0i0;
let inp_denom_at_r2i1 = inp_denom_at_r1i1.double() - inp_denom_at_r0i1;

// Fraction addition polynomials at points:
// - `numer(x) = inp_denom(x, 1) + inp_denom(x, 0)`
// - `denom(x) = inp_denom(x, 1) * inp_denom(x, 0)`
// at points `(r, {0, 2}, bits(i))`.
let Fraction {
numerator: numer_at_r0i,
denominator: denom_at_r0i,
} = Reciprocal {
x: inp_denom_at_r0i0,
} + Reciprocal {
x: inp_denom_at_r0i1,
};
let Fraction {
numerator: numer_at_r2i,
denominator: denom_at_r2i,
} = Reciprocal {
x: inp_denom_at_r2i0,
} + Reciprocal {
x: inp_denom_at_r2i1,
};

let eq_eval_at_0i = eq_evals[i];
eval_at_0 += eq_eval_at_0i * (numer_at_r0i + lambda * denom_at_r0i);
eval_at_2 += eq_eval_at_0i * (numer_at_r2i + lambda * denom_at_r2i);
}

(eval_at_0, eval_at_2)
}

/// Returns evaluations `eq(x, y) * v` for all `x` in `{0, 1}^n`.
///
/// Evaluations are returned in bit-reversed order.
Expand All @@ -104,18 +256,66 @@ fn next_grand_product_layer(layer: &Mle<CpuBackend, SecureField>) -> Layer<CpuBa
Layer::GrandProduct(Mle::new(res))
}

fn next_logup_layer<F>(
numerators: MleExpr<'_, F>,
denominators: &Mle<CpuBackend, SecureField>,
) -> Layer<CpuBackend>
where
F: Field,
SecureField: ExtensionOf<F>,
CpuBackend: MleOps<F>,
{
let half_n = 1 << (denominators.n_variables() - 1);
let mut next_numerators = Vec::with_capacity(half_n);
let mut next_denominators = Vec::with_capacity(half_n);

for i in 0..half_n {
let a = Fraction::new(numerators[i * 2], denominators[i * 2]);
let b = Fraction::new(numerators[i * 2 + 1], denominators[i * 2 + 1]);
let res = a + b;
next_numerators.push(res.numerator);
next_denominators.push(res.denominator);
}

Layer::LogUpGeneric {
numerators: Mle::new(next_numerators),
denominators: Mle::new(next_denominators),
}
}

enum MleExpr<'a, F: Field> {
Constant(F),
Mle(&'a Mle<CpuBackend, F>),
}

impl<'a, F: Field> Index<usize> for MleExpr<'a, F> {
type Output = F;

fn index(&self, index: usize) -> &F {
match self {
Self::Constant(v) => v,
Self::Mle(mle) => &mle[index],
}
}
}

#[cfg(test)]
mod tests {
use std::iter::zip;

use num_traits::{One, Zero};
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};

use crate::core::backend::CpuBackend;
use crate::core::channel::Channel;
use crate::core::fields::m31::BaseField;
use crate::core::fields::qm31::SecureField;
use crate::core::fields::FieldExpOps;
use crate::core::lookups::gkr_prover::{prove_batch, GkrOps, Layer};
use crate::core::lookups::gkr_verifier::{partially_verify_batch, Gate, GkrArtifact, GkrError};
use crate::core::lookups::mle::Mle;
use crate::core::lookups::utils::eq;
use crate::core::lookups::utils::{eq, Fraction};
use crate::core::test_utils::test_channel;

#[test]
Expand Down Expand Up @@ -150,11 +350,126 @@ mod tests {
let GkrArtifact {
ood_point: r,
claims_to_verify_by_instance,
..
n_variables_by_instance: _,
} = partially_verify_batch(vec![Gate::GrandProduct], &proof, &mut test_channel())?;

assert_eq!(proof.output_claims_by_instance, [vec![product]]);
assert_eq!(claims_to_verify_by_instance, [vec![col.eval_at_point(&r)]]);
Ok(())
}

#[test]
fn logup_with_generic_trace_works() -> Result<(), GkrError> {
const N: usize = 1 << 5;
let mut rng = SmallRng::seed_from_u64(0);
let numerator_values = (0..N).map(|_| rng.gen()).collect::<Vec<SecureField>>();
let denominator_values = (0..N).map(|_| rng.gen()).collect::<Vec<SecureField>>();
let sum = zip(&numerator_values, &denominator_values)
.map(|(&n, &d)| Fraction::new(n, d))
.sum::<Fraction<SecureField>>();
let numerators = Mle::<CpuBackend, SecureField>::new(numerator_values);
let denominators = Mle::<CpuBackend, SecureField>::new(denominator_values);
let top_layer = Layer::LogUpGeneric {
numerators: numerators.clone(),
denominators: denominators.clone(),
};
let (proof, _) = prove_batch(&mut test_channel(), vec![top_layer]);

let GkrArtifact {
ood_point,
claims_to_verify_by_instance,
n_variables_by_instance: _,
} = partially_verify_batch(vec![Gate::LogUp], &proof, &mut test_channel())?;

assert_eq!(claims_to_verify_by_instance.len(), 1);
assert_eq!(proof.output_claims_by_instance.len(), 1);
assert_eq!(
claims_to_verify_by_instance[0],
[
numerators.eval_at_point(&ood_point),
denominators.eval_at_point(&ood_point)
]
);
assert_eq!(
proof.output_claims_by_instance[0],
[sum.numerator, sum.denominator]
);
Ok(())
}

#[test]
fn logup_with_singles_trace_works() -> Result<(), GkrError> {
const N: usize = 1 << 5;
println!("{}", BaseField::from(2).inverse());
println!("{}", BaseField::from(1) - BaseField::from(2).inverse());

let mut rng = SmallRng::seed_from_u64(0);
let denominator_values = (0..N).map(|_| rng.gen()).collect::<Vec<SecureField>>();
let sum = denominator_values
.iter()
.map(|&d| Fraction::new(SecureField::one(), d))
.sum::<Fraction<SecureField>>();
let denominators = Mle::<CpuBackend, SecureField>::new(denominator_values);
let top_layer = Layer::LogUpSingles {
denominators: denominators.clone(),
};
let (proof, _) = prove_batch(&mut test_channel(), vec![top_layer]);

let GkrArtifact {
ood_point,
claims_to_verify_by_instance,
n_variables_by_instance: _,
} = partially_verify_batch(vec![Gate::LogUp], &proof, &mut test_channel())?;

assert_eq!(claims_to_verify_by_instance.len(), 1);
assert_eq!(proof.output_claims_by_instance.len(), 1);
assert_eq!(
claims_to_verify_by_instance[0],
[SecureField::one(), denominators.eval_at_point(&ood_point)]
);
assert_eq!(
proof.output_claims_by_instance[0],
[sum.numerator, sum.denominator]
);
Ok(())
}

#[test]
fn logup_with_multiplicities_trace_works() -> Result<(), GkrError> {
const N: usize = 1 << 5;
let mut rng = SmallRng::seed_from_u64(0);
let numerator_values = (0..N).map(|_| rng.gen()).collect::<Vec<BaseField>>();
let denominator_values = (0..N).map(|_| rng.gen()).collect::<Vec<SecureField>>();
let sum = zip(&numerator_values, &denominator_values)
.map(|(&n, &d)| Fraction::new(n.into(), d))
.sum::<Fraction<SecureField>>();
let numerators = Mle::<CpuBackend, BaseField>::new(numerator_values);
let denominators = Mle::<CpuBackend, SecureField>::new(denominator_values);
let top_layer = Layer::LogUpMultiplicities {
numerators: numerators.clone(),
denominators: denominators.clone(),
};
let (proof, _) = prove_batch(&mut test_channel(), vec![top_layer]);

let GkrArtifact {
ood_point,
claims_to_verify_by_instance,
n_variables_by_instance: _,
} = partially_verify_batch(vec![Gate::LogUp], &proof, &mut test_channel())?;

assert_eq!(claims_to_verify_by_instance.len(), 1);
assert_eq!(proof.output_claims_by_instance.len(), 1);
assert_eq!(
claims_to_verify_by_instance[0],
[
numerators.eval_at_point(&ood_point),
denominators.eval_at_point(&ood_point)
]
);
assert_eq!(
proof.output_claims_by_instance[0],
[sum.numerator, sum.denominator]
);
Ok(())
}
}
Loading
Loading