Skip to content

Latest commit

 

History

History
97 lines (93 loc) · 3.39 KB

README.md

File metadata and controls

97 lines (93 loc) · 3.39 KB

Deep Natural Language Processing

Table of contents

  • Course 1
    • Lesson
      • Course introduction
      • General machine learning terminology
      • Deep learning history
      • Linear regression example
      • Loss function
      • Gradient descent (with its stochastic variation)
    • Practical work
      • Anaconda environment setup
      • Manipulation of PyTorch tensors
        • Creation
        • Indexing
        • Slicing
        • Shape manipulation
        • Combination
        • Aggregation
        • Broadcasting
        • Boolean logic and indexing
  • Course 2
    • Lesson
      • Neuron definition
      • Neural network definition
      • Softmax activation function
      • Cross entropy loss
      • Neural network example
    • Practical work
      • MNIST image classification using Multi-Layer Perceptron
      • Model evaluation
  • Course 3
    • Lesson
      • Backpropagation algorithm
      • Convolution layer
      • Pooling layer
      • Convolutional neural network example
    • Practical work
      • MNIST image classification using Convolutional neural network
      • Optimizer change experimentation
      • CIFAR-10 image classification using Convolutional neural network
  • Course 4
    • Lesson
      • CIFAR-10 Convolutional neural network solution
      • Dropout layer
      • Modular design of neural networks
      • Learning rate decay
      • Data augmentation
      • Concept of Transfer learning
    • Practical work
      • CIFAR-10 using modular design, dropout, data augmentation and learning rate decay
      • Resnet transfer learning
  • Course 5
    • Lesson
      • Transfer learning in practice
      • Neural networks for Natural Language Processing
        • Word embeddings
        • Text preprocessing methodology
        • Multi-layer perceptron text classifier
        • 1D CNN text classifier
        • RNN text classifier
    • Practical work
      • Multi-layer perceptron image autoencoder
      • Convolutional image autoencoder
  • Course 6
    • Lesson
      • Transfer learning for NLP
        • Language modeling
        • Next sentence prediction
      • BERT
        • Attention mechanism
        • BERT embeddings
        • Types of tasks BERT can handle
        • BERT architecture
        • BERT finetuning example on sentiment classification
    • Practical work
      • BERT application to horoscope classification
      • Horoscope language modeling

References