-
Notifications
You must be signed in to change notification settings - Fork 590
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fix: column aware row encoding: improve the implementation and add bench #17818
Merged
Merged
Changes from all commits
Commits
Show all changes
9 commits
Select commit
Hold shift + click to select a range
425e5f5
add benchmark
fuyufjh 8491e6d
improve performance
fuyufjh f12a6b0
use sorted algorithm & add assertion
fuyufjh c8ab9dc
cargo clippy
fuyufjh 98a452d
revert "use sorted algorithm & add assertion"
fuyufjh 3254735
tune performace
fuyufjh 8f62164
bench 4 columns
fuyufjh b76984c
build a default row in advance
fuyufjh f84fc06
Merge branch 'main' into eric/bench_column_aware_encoding
fuyufjh File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
// Copyright 2024 RisingWave Labs | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
use std::sync::Arc; | ||
|
||
use criterion::{black_box, criterion_group, criterion_main, Criterion}; | ||
use rand::{Rng, SeedableRng}; | ||
use risingwave_common::catalog::ColumnId; | ||
use risingwave_common::row::OwnedRow; | ||
use risingwave_common::types::{DataType, Date, ScalarImpl}; | ||
use risingwave_common::util::value_encoding::column_aware_row_encoding::*; | ||
use risingwave_common::util::value_encoding::*; | ||
|
||
fn bench_column_aware_encoding_16_columns(c: &mut Criterion) { | ||
let mut rng = rand::rngs::StdRng::seed_from_u64(42); | ||
|
||
// The schema is inspired by the TPC-H lineitem table | ||
let data_types = Arc::new([ | ||
DataType::Int64, | ||
DataType::Int64, | ||
DataType::Int64, | ||
DataType::Int32, | ||
DataType::Decimal, | ||
DataType::Decimal, | ||
DataType::Decimal, | ||
DataType::Decimal, | ||
DataType::Varchar, | ||
DataType::Varchar, | ||
DataType::Date, | ||
DataType::Date, | ||
DataType::Date, | ||
DataType::Varchar, | ||
DataType::Varchar, | ||
DataType::Varchar, | ||
]); | ||
let row = OwnedRow::new(vec![ | ||
Some(ScalarImpl::Int64(rng.gen())), | ||
Some(ScalarImpl::Int64(rng.gen())), | ||
Some(ScalarImpl::Int64(rng.gen())), | ||
Some(ScalarImpl::Int32(rng.gen())), | ||
Some(ScalarImpl::Decimal("1.0".parse().unwrap())), | ||
Some(ScalarImpl::Decimal("114.514".parse().unwrap())), | ||
None, | ||
Some(ScalarImpl::Decimal("0.08".parse().unwrap())), | ||
Some(ScalarImpl::Utf8("A".into())), | ||
Some(ScalarImpl::Utf8("B".into())), | ||
Some(ScalarImpl::Date(Date::from_ymd_uncheck(2024, 7, 1))), | ||
Some(ScalarImpl::Date(Date::from_ymd_uncheck(2024, 7, 2))), | ||
Some(ScalarImpl::Date(Date::from_ymd_uncheck(2024, 7, 3))), | ||
Some(ScalarImpl::Utf8("D".into())), | ||
None, | ||
Some(ScalarImpl::Utf8("No comments".into())), | ||
]); | ||
|
||
let column_ids = (1..=data_types.len()) | ||
.map(|i| ColumnId::from(i as i32)) | ||
.collect::<Vec<_>>(); | ||
|
||
c.bench_function("column_aware_row_encoding_16_columns_encode", |b| { | ||
let serializer = Serializer::new(&column_ids[..]); | ||
b.iter(|| { | ||
black_box(serializer.serialize(&row)); | ||
}); | ||
}); | ||
|
||
let serializer = Serializer::new(&column_ids[..]); | ||
let encoded = serializer.serialize(&row); | ||
|
||
c.bench_function("column_aware_row_encoding_16_columns_decode", |b| { | ||
let deserializer = | ||
Deserializer::new(&column_ids[..], data_types.clone(), std::iter::empty()); | ||
b.iter(|| { | ||
let result = deserializer.deserialize(&encoded).unwrap(); | ||
black_box(result); | ||
}); | ||
}); | ||
} | ||
|
||
fn bench_column_aware_encoding_4_columns(c: &mut Criterion) { | ||
let mut rng = rand::rngs::StdRng::seed_from_u64(42); | ||
|
||
// The schema is inspired by the TPC-H nation table | ||
let data_types = Arc::new([ | ||
DataType::Int32, | ||
DataType::Varchar, | ||
DataType::Int32, | ||
DataType::Varchar, | ||
]); | ||
let row = OwnedRow::new(vec![ | ||
Some(ScalarImpl::Int32(rng.gen())), | ||
Some(ScalarImpl::Utf8("United States".into())), | ||
Some(ScalarImpl::Int32(rng.gen())), | ||
Some(ScalarImpl::Utf8("No comments".into())), | ||
]); | ||
|
||
let column_ids = (1..=data_types.len()) | ||
.map(|i| ColumnId::from(i as i32)) | ||
.collect::<Vec<_>>(); | ||
|
||
c.bench_function("column_aware_row_encoding_4_columns_encode", |b| { | ||
let serializer = Serializer::new(&column_ids[..]); | ||
b.iter(|| { | ||
black_box(serializer.serialize(&row)); | ||
}); | ||
}); | ||
|
||
let serializer = Serializer::new(&column_ids[..]); | ||
let encoded = serializer.serialize(&row); | ||
|
||
c.bench_function("column_aware_row_encoding_4_columns_decode", |b| { | ||
let deserializer = | ||
Deserializer::new(&column_ids[..], data_types.clone(), std::iter::empty()); | ||
b.iter(|| { | ||
let result = deserializer.deserialize(&encoded).unwrap(); | ||
black_box(result); | ||
}); | ||
}); | ||
} | ||
|
||
criterion_group!( | ||
benches, | ||
bench_column_aware_encoding_16_columns, | ||
bench_column_aware_encoding_4_columns, | ||
); | ||
criterion_main!(benches); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Interesting. I thought
BTreeMap
is faster when there are only a few entries: https://arc.net/l/quote/okdycbqiThe current value of
B
is 6. According to this, can we also benchmark the case for a table containing less than 6 columns?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Added bench
column_aware_row_encoding_4_columns
. Observed a similar performance improvement.