Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix precision issue of pow(int, float) #6103

Merged
merged 3 commits into from
Dec 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 2 additions & 7 deletions test/test_core_aten_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def onlyIfPJRTDeviceIsCUDA(fn):
fn)


def diff_output(testcase, output1, output2, rtol, atol, equal_nan=False):
def diff_output(testcase, output1, output2, rtol, atol, equal_nan=True):
if isinstance(output1, torch.Tensor):
testcase.assertIsInstance(output2, torch.Tensor)
output2_cpu = output2.detach().cpu()
Expand All @@ -47,7 +47,7 @@ def run_export_and_compare(testcase,
kwargs,
atol=1e-3,
rtol=1e-5,
equal_nan=False):
equal_nan=True):
device = xm.xla_device()
with testcase.subTest('torch_eval'):
res = func(*args, **kwargs)
Expand Down Expand Up @@ -3292,7 +3292,6 @@ def test_aten_pow_Scalar_0(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.pow.Scalar, args, kwargs)

@unittest.skip
def test_aten_pow_Tensor_Scalar_0(self):
args = (
torch.randn((10, 10)).to(torch.float32),
Expand All @@ -3301,7 +3300,6 @@ def test_aten_pow_Tensor_Scalar_0(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.pow.Tensor_Scalar, args, kwargs)

@unittest.skip
def test_aten_pow_Tensor_Scalar_1(self):
args = (
torch.randn((10, 10)).to(torch.float16),
Expand All @@ -3310,7 +3308,6 @@ def test_aten_pow_Tensor_Scalar_1(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.pow.Tensor_Scalar, args, kwargs)

@unittest.skip
def test_aten_pow_Tensor_Scalar_2(self):
args = (
torch.randint(0, 10, (10, 10)).to(torch.int32),
Expand All @@ -3324,7 +3321,6 @@ def test_aten_pow_Scalar_1(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.pow.Scalar, args, kwargs)

@unittest.skip
def test_aten_pow_Tensor_Tensor_0(self):
args = (
torch.randn((10, 10)).to(torch.float32),
Expand All @@ -3333,7 +3329,6 @@ def test_aten_pow_Tensor_Tensor_0(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.pow.Tensor_Tensor, args, kwargs)

@unittest.skip
def test_aten_pow_Tensor_Tensor_1(self):
args = (
torch.randn((10, 10)).to(torch.float16),
Expand Down
16 changes: 12 additions & 4 deletions torch_xla/csrc/tensor_methods.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2127,13 +2127,21 @@ XLATensorPtr permute(const XLATensorPtr& input,
XLATensorPtr pow(const XLATensorPtr& input, const at::Scalar& exponent) {
// We want to pass exponent_node as a constant to give XLA more room to
// optimize
torch::lazy::Value exponent_node =
XLAGraphExecutor::Get()->GetIrValueForConstant(exponent, input->shape());
return input->CreateFrom(Pow(input->GetIrValue(), exponent_node));
const torch::lazy::BackendDevice& device = input->GetDevice();
auto xla_type = MakeXlaPrimitiveType(GetScalarType(exponent), &device);
// Float scalar literal in Python defaults to F64. But we want to produce
// F32 as this is the default Pytorch behavior.
if (xla_type == xla::PrimitiveType::F64) {
xla_type = xla::PrimitiveType::F32;
}
torch::lazy::Value exp_node = ScalarOp(exponent, xla_type);
torch::lazy::NodePtr node = Pow(input->GetIrValue(), exp_node);
return input->CreateFrom(node, /*logical_element_type=*/c10::nullopt);
}

XLATensorPtr pow(const XLATensorPtr& input, const XLATensorPtr& exponent) {
return input->CreateFrom(Pow(input->GetIrValue(), exponent->GetIrValue()));
torch::lazy::NodePtr node = Pow(input->GetIrValue(), exponent->GetIrValue());
return input->CreateFrom(node, /*logical_element_type=*/c10::nullopt);
}

XLATensorPtr pow(const at::Scalar& input, const XLATensorPtr& exponent) {
Expand Down
11 changes: 0 additions & 11 deletions torch_xla/csrc/xla_graph_executor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -259,17 +259,6 @@ torch::lazy::Value XLAGraphExecutor::GetDeviceDataIrValue(
return torch::lazy::MakeNode<DeviceData>(std::move(data));
}

torch::lazy::Value XLAGraphExecutor::GetIrValueForConstant(
const at::Scalar& value, const xla::Shape& shape) {
torch::lazy::Value ir_value =
ScalarOp(std::move(value), shape.element_type());
if (!shape.dimensions().empty()) {
ir_value = torch::lazy::MakeNode<Expand>(
ir_value, torch::lazy::ToVector<int64_t>(shape.dimensions()));
}
return ir_value;
}

torch::lazy::Value XLAGraphExecutor::GetIrValueForScalar(
const at::Scalar& value, xla::PrimitiveType type,
const torch::lazy::BackendDevice& device) {
Expand Down
4 changes: 0 additions & 4 deletions torch_xla/csrc/xla_graph_executor.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,10 +63,6 @@ class XLAGraphExecutor : public torch::lazy::LazyGraphExecutor {
torch::lazy::Value GetDeviceDataIrValue(
const at::Scalar& value, xla::PrimitiveType type,
const torch::lazy::BackendDevice& device);
// Use with caution, constant will cause more frequent recompilation
// compared to the device_data.
torch::lazy::Value GetIrValueForConstant(const at::Scalar& value,
const xla::Shape& shape);
torch::lazy::Value GetIrValueForScalar(
const at::Scalar& value, xla::PrimitiveType type,
const torch::lazy::BackendDevice& device);
Expand Down