Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Trim filtered table to original time range in TabOpLowPassFilter #3969

Merged
merged 5 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@ v4.6
- Added the templatized `MocoStudy::analyze<T>()` and equivalent scripting counterparts: `analyzeVec3`, `analyzeSpatialVec`, `analyzeRotation`. (#3940)
- Added `ConstantCurvatureJoint` to the SWIG bindings; it is now available in Matlab and Python (#3957).
- Added methods and `Output`s for calculating the angular momentum of a `Body`. (#3962)
- Updated `TabOpLowPassFilter` so that by default the processed table is trimmed to the original time range after padding and filtering.
The original behavior (no trimming) can be enabled via the new property `trim_to_original_time_range`. (#3969)


v4.5.1
Expand Down
52 changes: 25 additions & 27 deletions OpenSim/Moco/Test/testMocoInverse.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -222,23 +222,20 @@ TEST_CASE("MocoInverse Rajagopal2016, 18 muscles", "[casadi]") {
"/jointset/back/lumbar_extension/speed"));
}
}
// Next test_case fails on linux while parsing .sto file, disabling for now
#ifdef _WIN32

TEST_CASE("Test IMUDataReporter for gait") {

// Compute accelerometer signals from MocoInverse solution.
ModelProcessor modelProcessor =
ModelProcessor("subject_walk_armless_18musc.osim") |
ModOpReplaceJointsWithWelds({"subtalar_r", "subtalar_l",
"mtp_r", "mtp_l"}) |
ModOpReplaceMusclesWithDeGrooteFregly2016() |
ModOpIgnorePassiveFiberForcesDGF() |
ModOpTendonComplianceDynamicsModeDGF("implicit") |
ModOpAddExternalLoads("subject_walk_armless_external_loads.xml");
std::vector<std::string> paths = {"/bodyset/pelvis",
"/bodyset/femur_r",
"/bodyset/tibia_r",
"/bodyset/calcn_r"};
ModelProcessor("subject_walk_armless_18musc.osim") |
ModOpReplaceJointsWithWelds({"subtalar_r", "subtalar_l",
"mtp_r", "mtp_l"}) |
ModOpReplaceMusclesWithDeGrooteFregly2016() |
ModOpIgnorePassiveFiberForcesDGF() |
ModOpTendonComplianceDynamicsModeDGF("implicit") |
ModOpAddExternalLoads("subject_walk_armless_external_loads.xml");
std::vector<std::string> paths = {"/bodyset/pelvis", "/bodyset/femur_r",
"/bodyset/tibia_r", "/bodyset/calcn_r"};
Model model = modelProcessor.process();
OpenSenseUtilities().addModelIMUs(model, paths);
model.initSystem();
Expand All @@ -247,15 +244,17 @@ TEST_CASE("Test IMUDataReporter for gait") {
analyzeMocoTrajectory<SimTK::Vec3>(model, std,
{".*accelerometer_signal"});
STOFileAdapter_<SimTK::Vec3>::write(accelSignals,
"testMocoInverse_accelerometer_signals.sto");
"testMocoInverse_accelerometer_signals.sto");

// Compute accelerometer signals with no forces and a PositionMotion created
// from the model coordinates.

// Create the coordinates table (in radians).
auto tableProcessor =
TableProcessor("subject_walk_armless_coordinates.mot") |
TabOpLowPassFilter(6) |
// Trimming to the original time range increases the acceleration
// error slightly, so we disable it here.
TabOpLowPassFilter(6, false) |
TabOpUseAbsoluteStateNames();
auto coordinatesRadians = tableProcessor.processAndConvertToRadians(model);
for (const auto& label : coordinatesRadians.getColumnLabels()) {
Expand All @@ -272,11 +271,11 @@ TEST_CASE("Test IMUDataReporter for gait") {
"subject_walk_armless_coordinates_radians.sto");
// Create a model with no muscles (or other forces) and add IMU components.
ModelProcessor modelProcessorNoMuscles =
ModelProcessor("subject_walk_armless_18musc.osim") |
ModOpReplaceJointsWithWelds({"subtalar_r", "subtalar_l",
"mtp_r", "mtp_l"}) |
ModOpRemoveMuscles() |
ModOpAddExternalLoads("subject_walk_armless_external_loads.xml");
ModelProcessor("subject_walk_armless_18musc.osim") |
ModOpReplaceJointsWithWelds({"subtalar_r", "subtalar_l",
"mtp_r", "mtp_l"}) |
ModOpRemoveMuscles() |
ModOpAddExternalLoads("subject_walk_armless_external_loads.xml");
Model modelNoMuscles = modelProcessorNoMuscles.process();
modelNoMuscles.updForceSet().clearAndDestroy();
OpenSenseUtilities().addModelIMUs(modelNoMuscles, paths);
Expand All @@ -285,7 +284,7 @@ TEST_CASE("Test IMUDataReporter for gait") {

// Add a PositionMotion to the model based on the coordinate trajectories.
auto statesTraj = StatesTrajectory::createFromStatesTable(model,
coordinatesRadians, true, true, true);
coordinatesRadians, true, true, true);
auto posmot = PositionMotion::createFromStatesTrajectory(model, statesTraj);
posmot->setName("position_motion");
modelNoMuscles.addComponent(posmot.release());
Expand Down Expand Up @@ -319,12 +318,12 @@ TEST_CASE("Test IMUDataReporter for gait") {
// Compute error in accelerometer signals.
auto accelSignalsFlat = accelSignals.flatten();
auto accelBlock = accelSignalsFlat.getMatrixBlock(0, 0,
accelSignalsFlat.getNumRows(),
accelSignalsFlat.getNumColumns());
accelSignalsFlat.getNumRows(),
accelSignalsFlat.getNumColumns());
auto accelBlockNoMuscles =
accelSignalsNoMusclesDownSampledFlat.getMatrixBlock(0, 0,
accelSignalsNoMusclesDownSampledFlat.getNumRows(),
accelSignalsNoMusclesDownSampledFlat.getNumColumns());
accelSignalsNoMusclesDownSampledFlat.getMatrixBlock(0, 0,
accelSignalsNoMusclesDownSampledFlat.getNumRows(),
accelSignalsNoMusclesDownSampledFlat.getNumColumns());
auto diff = accelBlock - accelBlockNoMuscles;
auto diffSqr = diff.elementwiseMultiply(diff);
auto sumSquaredError = diffSqr.rowSum();
Expand Down Expand Up @@ -391,4 +390,3 @@ TEST_CASE("Test IMUDataReporter for gait") {
// TODO The error when using AnalyzeTool is slightly larger.
SimTK_TEST_EQ_TOL(integratedSumSquaredErrorAnalyze, 0.0, 1e-3);
}
#endif
19 changes: 18 additions & 1 deletion OpenSim/Simulation/TableProcessor.h
Original file line number Diff line number Diff line change
Expand Up @@ -183,19 +183,36 @@ class OSIMSIMULATION_API TabOpLowPassFilter : public TableOperator {
OpenSim_DECLARE_PROPERTY(cutoff_frequency, double,
"Low-pass cutoff frequency (Hz) (default is -1, which means no "
"filtering).");
TabOpLowPassFilter() { constructProperty_cutoff_frequency(-1); }
OpenSim_DECLARE_PROPERTY(trim_to_original_time_range, bool,
"Trim the rows of the output table to match the original table's "
"time range after filtering (default: true).");
TabOpLowPassFilter() {
constructProperty_cutoff_frequency(-1);
constructProperty_trim_to_original_time_range(true);
}
TabOpLowPassFilter(double cutoffFrequency) : TabOpLowPassFilter() {
set_cutoff_frequency(cutoffFrequency);
}
TabOpLowPassFilter(double cutoffFrequency, bool trimToOriginalTimeRange) :
TabOpLowPassFilter() {
set_cutoff_frequency(cutoffFrequency);
set_trim_to_original_time_range(trimToOriginalTimeRange);
}
void operate(TimeSeriesTable& table, const Model* model = nullptr)
const override {
if (get_cutoff_frequency() != -1) {
OPENSIM_THROW_IF(get_cutoff_frequency() <= 0, Exception,
"Expected cutoff frequency to be positive, but got {}.",
get_cutoff_frequency());

const auto& times = table.getIndependentColumn();
double initialTime = times.front();
double finalTime = times.back();
TableUtilities::filterLowpass(
table, get_cutoff_frequency(), true);
if (get_trim_to_original_time_range()) {
table.trim(initialTime, finalTime);
}
}
}
};
Expand Down
10 changes: 10 additions & 0 deletions OpenSim/Simulation/Test/testTableProcessor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,3 +76,13 @@ TEST_CASE("TableProcessor") {
}
}
}

TEST_CASE("TabOpLowPassFilter retains original time range") {
TimeSeriesTable table(std::vector<double>{1, 2, 3, 4, 5, 6},
SimTK::Test::randMatrix(6, 2), std::vector<std::string>{"a", "b"});
TableProcessor proc = TableProcessor(table) | TabOpLowPassFilter(6);
TimeSeriesTable out = proc.process();
CHECK(out.getNumRows() == 6);
CHECK(out.getIndependentColumn().front() == 1);
CHECK(out.getIndependentColumn().back() == 6);
}
Loading