Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More docstrings #34

Merged
merged 5 commits into from
Mar 31, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 186 additions & 0 deletions narwhals/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,6 +631,54 @@ def drop(self, *columns: str | Iterable[str]) -> Self:
return super().drop(*columns)

def unique(self, subset: str | list[str]) -> Self:
r"""
Drop duplicate rows from this dataframe.

Arguments:
subset: Column name(s) to consider when identifying duplicate rows.

Returns:
DataFrame: DataFrame with unique rows.

Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_pl = pl.DataFrame(
... {
... "foo": [1, 2, 3, 1],
... "bar": ["a", "a", "a", "a"],
... "ham": ["b", "b", "b", "b"],
... }
... )
>>> df = nw.DataFrame(df_pl)
>>> df
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
| Use `narwhals.to_native()` to see native output |
└─────────────────────────────────────────────────┘
>>> dframe = df.unique(["bar", "ham"])
>>> nw.to_native(dframe)
shape: (1, 3)
┌─────┬─────┬─────┐
│ foo ┆ bar ┆ ham │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str │
╞═════╪═════╪═════╡
│ 1 ┆ a ┆ b │
└─────┴─────┴─────┘
>>> dframe = df.unique("foo").sort("foo")
>>> nw.to_native(dframe)
shape: (3, 3)
┌─────┬─────┬─────┐
│ foo ┆ bar ┆ ham │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str │
╞═════╪═════╪═════╡
│ 1 ┆ a ┆ b │
│ 2 ┆ a ┆ b │
│ 3 ┆ a ┆ b │
└─────┴─────┴─────┘
"""
return super().unique(subset)

def filter(self, *predicates: IntoExpr | Iterable[IntoExpr]) -> Self:
Expand Down Expand Up @@ -815,6 +863,90 @@ def sort(
*more_by: str,
descending: bool | Sequence[bool] = False,
) -> Self:
r"""
Sort the dataframe by the given columns.

Arguments:
by: Column(s) names to sort by.

*more_by: Additional columns to sort by, specified as positional
arguments.

descending: Sort in descending order. When sorting by multiple
columns, can be specified per column by passing a
sequence of booleans.

Examples:
Pass a single column name to sort by that column.

>>> import polars as pl
>>> import narwhals as nw
>>> df_pl = pl.DataFrame(
... {
... "a": [1, 2, None],
... "b": [6.0, 5.0, 4.0],
... "c": ["a", "c", "b"],
... }
... )
>>> df = nw.DataFrame(df_pl)
>>> dframe = df.sort("a")
>>> dframe
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
| Use `narwhals.to_native()` to see native output |
└─────────────────────────────────────────────────┘
>>> nw.to_native(dframe)
shape: (3, 3)
┌──────┬─────┬─────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ str │
╞══════╪═════╪═════╡
│ null ┆ 4.0 ┆ b │
│ 1 ┆ 6.0 ┆ a │
│ 2 ┆ 5.0 ┆ c │
└──────┴─────┴─────┘

Sort by multiple columns by passing a list of columns.

>>> dframe = df.sort(["c", "a"], descending=True)
>>> dframe
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
| Use `narwhals.to_native()` to see native output |
└─────────────────────────────────────────────────┘
>>> nw.to_native(dframe)
shape: (3, 3)
┌──────┬─────┬─────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ str │
╞══════╪═════╪═════╡
│ 2 ┆ 5.0 ┆ c │
│ null ┆ 4.0 ┆ b │
│ 1 ┆ 6.0 ┆ a │
└──────┴─────┴─────┘

Or use positional arguments to sort by multiple columns in the same way.

>>> dframe = df.sort("c", "a", descending=[False, True])
>>> dframe
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
| Use `narwhals.to_native()` to see native output |
└─────────────────────────────────────────────────┘
>>> nw.to_native(dframe)
shape: (3, 3)
┌──────┬─────┬─────┐
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ str │
╞══════╪═════╪═════╡
│ 1 ┆ 6.0 ┆ a │
│ null ┆ 4.0 ┆ b │
│ 2 ┆ 5.0 ┆ c │
└──────┴─────┴─────┘
"""
return super().sort(by, *more_by, descending=descending)

def join(
Expand All @@ -825,6 +957,60 @@ def join(
left_on: str | list[str],
right_on: str | list[str],
) -> Self:
r"""
Join in SQL-like fashion.

Arguments:
other: DataFrame to join with.

how: {'inner'}
Join strategy.

* *inner*: Returns rows that have matching values in both
tables

left_on: Name(s) of the left join column(s).

right_on: Name(s) of the right join column(s).

Returns:
A new joined DataFrame

Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_pl = pl.DataFrame(
... {
... "foo": [1, 2, 3],
... "bar": [6.0, 7.0, 8.0],
... "ham": ["a", "b", "c"],
... }
... )
>>> other_df_pl = pl.DataFrame(
... {
... "apple": ["x", "y", "z"],
... "ham": ["a", "b", "d"],
... }
... )
>>> df = nw.DataFrame(df_pl)
>>> other_df = nw.DataFrame(other_df_pl)
>>> dframe = df.join(other_df, left_on="ham", right_on="ham")
>>> dframe
┌─────────────────────────────────────────────────┐
| Narwhals DataFrame |
| Use `narwhals.to_native()` to see native output |
└─────────────────────────────────────────────────┘
>>> nw.to_native(dframe)
shape: (2, 4)
┌─────┬─────┬─────┬───────┐
│ foo ┆ bar ┆ ham ┆ apple │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ f64 ┆ str ┆ str │
╞═════╪═════╪═════╪═══════╡
│ 1 ┆ 6.0 ┆ a ┆ x │
│ 2 ┆ 7.0 ┆ b ┆ y │
└─────┴─────┴─────┴───────┘
"""
return self._from_dataframe(
self._dataframe.join(
self._extract_native(other),
Expand Down
Loading