-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Create a BasicMathNode that can evaluate expressions given as a string #185
Merged
Merged
Changes from 2 commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
"""Nodes that perform basic math operations that can be specified as strings. | ||
|
||
The goal of this library is to save users from needing to create a bunch of | ||
small FunctionNodes to perform basic math. | ||
""" | ||
|
||
import ast | ||
|
||
# Disable unused import because we need all of these imported | ||
# so they can be used during evaluation of the node. | ||
import math # noqa: F401 | ||
|
||
import jax.numpy as jnp # noqa: F401 | ||
import numpy as np # noqa: F401 | ||
|
||
from tdastro.base_models import FunctionNode | ||
|
||
|
||
class BasicMathNode(FunctionNode): | ||
"""A node that evaluates basic mathematical functions. | ||
|
||
The BasicMathNode wraps Python's eval() function to sanitize the input string | ||
and thus prevent the execution of arbitrary code. It also allows the user to write | ||
the expression once and execute using math, numpy, or JAX. The names of the | ||
variables in the expression must match the input variables provided by kwargs. | ||
|
||
Example: | ||
my_node = BasicMathNode( | ||
"redshift + 10.0 * sin(phase)", | ||
redshift=host.redshift, | ||
phase=source.phase, | ||
) | ||
|
||
Attributes | ||
---------- | ||
expression : `str` | ||
The expression to evaluate. | ||
backend : `str` | ||
The math libary to use. Must be one of: math, numpy, or jax. | ||
|
||
Parameters | ||
---------- | ||
expression : `str` | ||
The expression to evaluate. | ||
backend : `str` | ||
The math libary to use. Must be one of: math, numpy, or jax. | ||
node_label : `str`, optional | ||
An identifier (or name) for the current node. | ||
**kwargs : `dict`, optional | ||
Any additional keyword arguments. Every variable in the expression | ||
must be included as a kwarg. | ||
""" | ||
|
||
# A list of supported Python operations. Used to prevent eval from | ||
# running arbitrary python expressions. The Call and Name types are special | ||
# cased so we can do checks and translations. | ||
_supported_ast_nodes = ( | ||
ast.Module, # Top level object when parsed as exec. | ||
ast.Expression, # Top level object when parsed as eval. | ||
ast.Expr, # Math expressions. | ||
ast.Constant, # Constant values. | ||
ast.Load, # Load a variable - must come from an approved function or variable. | ||
ast.Store, # Store value - must come from an approved function or variable. | ||
ast.BinOp, # Binary operations | ||
ast.Add, | ||
ast.Sub, | ||
ast.Mult, | ||
ast.Div, | ||
ast.FloorDiv, | ||
ast.Mod, | ||
ast.Pow, | ||
ast.UnaryOp, # Uninary operations | ||
ast.UAdd, | ||
ast.USub, | ||
ast.Invert, | ||
) | ||
|
||
# A map from aa very limited set of supported math constant/function names to | ||
jeremykubica marked this conversation as resolved.
Show resolved
Hide resolved
|
||
# the corresponding names in [math, numpy, jax]. This is needed because | ||
# a very few functions have different names in different libraries. | ||
_math_map = { | ||
"abs": ["abs", "np.abs", "jnp.abs"], # Special handling for math. | ||
"acos": ["math.acos", "np.acos", "jnp.acos"], | ||
"acosh": ["math.acosh", "np.acosh", "jnp.acosh"], | ||
"asin": ["math.asin", "np.asin", "jnp.asin"], | ||
"asinh": ["math.asinh", "np.asinh", "jnp.asinh"], | ||
"atan": ["math.atan", "np.atan", "jnp.atan"], | ||
"atan2": ["math.atan2", "np.atan2", "jnp.atan2"], | ||
"cos": ["math.cos", "np.cos", "jnp.cos"], | ||
"cosh": ["math.cosh", "np.cosh", "jnp.cosh"], | ||
"ceil": ["math.ceil", "np.ceil", "jnp.ceil"], | ||
"degrees": ["math.degrees", "np.degrees", "jnp.degrees"], | ||
"deg2rad": ["math.radians", "np.deg2rad", "jnp.deg2rad"], # Special handling for math | ||
"e": ["math.e", "np.e", "jnp.e"], | ||
"exp": ["math.exp", "np.exp", "jnp.exp"], | ||
"fabs": ["math.fabs", "np.fabs", "jnp.fabs"], | ||
"floor": ["math.floor", "np.floor", "jnp.floor"], | ||
"log": ["math.log", "np.log", "jnp.log"], | ||
"log10": ["math.log10", "np.log10", "jnp.log10"], | ||
"log2": ["math.log2", "np.log2", "jnp.log2"], | ||
"max": ["max", "np.max", "jnp.max"], # Special handling for math | ||
"min": ["min", "np.min", "jnp.min"], # Special handling for math | ||
"pi": ["math.pi", "np.pi", "jnp.pi"], | ||
"pow": ["math.pow", "np.power", "jnp.power"], # Special handling for numpy | ||
"power": ["math.pow", "np.power", "jnp.power"], # Special handling for math | ||
"radians": ["math.radians", "np.radians", "jnp.radians"], | ||
"rad2deg": ["math.degrees", "np.rad2deg", "jnp.rad2deg"], # Special handling for math | ||
"sin": ["math.sin", "np.sin", "jnp.sin"], | ||
"sinh": ["math.sinh", "np.sinh", "jnp.sinh"], | ||
"sqrt": ["math.sqrt", "np.sqrt", "jnp.sqrt"], | ||
"tan": ["math.tan", "np.tan", "jnp.tan"], | ||
"tanh": ["math.tanh", "np.tanh", "jnp.tanh"], | ||
"trunc": ["math.trunc", "np.trunc", "jnp.trunc"], | ||
} | ||
|
||
def __init__(self, expression, backend="numpy", node_label=None, **kwargs): | ||
if backend not in ["jax", "math", "numpy"]: | ||
raise ValueError(f"Unsupported math backend {backend}") | ||
self.backend = backend | ||
|
||
# Check the expression is pure math and translate it into the correct backend. | ||
self.expression = expression | ||
self._prepare(**kwargs) | ||
|
||
# Create a function from the expression. Note the expression has | ||
# already been sanitized and validated via _prepare(). | ||
def eval_func(**kwargs): | ||
return eval(self.expression, globals(), kwargs) | ||
|
||
super().__init__(eval_func, node_label=node_label, **kwargs) | ||
|
||
def __call__(self, **kwargs): | ||
"""Evaluate the expression.""" | ||
return eval(self.expression, globals(), kwargs) | ||
|
||
def _prepare(self, **kwargs): | ||
"""Rewrite a python expression that consists of only basic math to use | ||
the prespecified math library. Santizes the string to prevent | ||
arbitrary code execution. | ||
|
||
Parameters | ||
---------- | ||
**kwargs : `dict`, optional | ||
Any additional keyword arguments, including the variable | ||
assignments. | ||
|
||
Returns | ||
------- | ||
tree : `ast.*` | ||
The root node of the parsed syntax tree. | ||
""" | ||
tree = ast.parse(self.expression) | ||
|
||
# Walk the tree and confirm that it only contains the basic math. | ||
for node in ast.walk(tree): | ||
if isinstance(node, self._supported_ast_nodes): | ||
# Nothing to do, this is a valid operation for the ast. | ||
continue | ||
elif isinstance(node, ast.Call): | ||
# Check that function calls are only using items on the allow list. | ||
if node.func.id not in self._math_map: | ||
raise ValueError(f"Unsupported function {node.func.id}") | ||
elif isinstance(node, ast.Name): | ||
if node.id in kwargs: | ||
# This is a user supplied variable. | ||
continue | ||
elif node.id in self._math_map: | ||
# This is a math function or constant. Overwrite | ||
if self.backend == "math": | ||
node.id = self._math_map[node.id][0] | ||
elif self.backend == "numpy": | ||
node.id = self._math_map[node.id][1] | ||
elif self.backend == "jax": | ||
node.id = self._math_map[node.id][2] | ||
else: | ||
raise ValueError( | ||
f"Unrecognized named variable or function {node.id}. " | ||
"This could be because the function is not supported or " | ||
"you forgot to include the variable as an argument." | ||
) | ||
else: | ||
raise ValueError(f"Invalid part of expression {type(node)}") | ||
|
||
# Convert the expression back into a string. | ||
self.expression = ast.unparse(tree) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import math | ||
|
||
import jax | ||
import pytest | ||
from tdastro.math_nodes.basic_math_node import BasicMathNode | ||
from tdastro.math_nodes.single_value_node import SingleVariableNode | ||
|
||
|
||
def test_basic_math_node(): | ||
"""Test that we can perform computations via a BasicMathNode.""" | ||
node_a = SingleVariableNode("a", 10.0) | ||
node_b = SingleVariableNode("b", -5.0) | ||
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Try with a math function. | ||
node_c = SingleVariableNode("c", 1000.0) | ||
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 12.0 | ||
|
||
# Try with a second math function. | ||
node = BasicMathNode( | ||
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="math" | ||
) | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Test that we can reproduce the power function. | ||
node_d = SingleVariableNode("d", 5.0) | ||
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5)) | ||
|
||
|
||
def test_basic_math_node_special_cases(): | ||
"""Test that we can handle some of the special cases for a BasicMathNode.""" | ||
node_a = SingleVariableNode("a", 180.0) | ||
node = BasicMathNode("sin(deg2rad(x) + pi / 2.0)", x=node_a.a, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == pytest.approx(-1.0) | ||
|
||
|
||
def test_basic_math_node_fail(): | ||
"""Test that we perform the needed checks for a math node.""" | ||
# Imports not allowed | ||
with pytest.raises(ValueError): | ||
_ = BasicMathNode("import os") | ||
|
||
# Ifs not allowed (won't work with JAX) | ||
with pytest.raises(ValueError): | ||
_ = BasicMathNode("x if 1.0 else 1.0", x=2.0) | ||
|
||
# We only allow functions on the allow list. | ||
with pytest.raises(ValueError): | ||
_ = BasicMathNode("fake_delete_everything_no_confirm('./')") | ||
with pytest.raises(ValueError): | ||
_ = BasicMathNode("median(10, 20)") | ||
|
||
# All variables must be defined. | ||
with pytest.raises(ValueError): | ||
_ = BasicMathNode("x + y", x=1.0) | ||
|
||
|
||
def test_basic_math_node_numpy(): | ||
"""Test that we can perform computations via a BasicMathNode.""" | ||
node_a = SingleVariableNode("a", 10.0) | ||
node_b = SingleVariableNode("b", -5.0) | ||
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="numpy") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Try with a math function. | ||
node_c = SingleVariableNode("c", 1000.0) | ||
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="numpy") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 12.0 | ||
|
||
# Try with a second math function. | ||
node = BasicMathNode( | ||
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="numpy" | ||
) | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Test that we can reproduce the power function. | ||
node_d = SingleVariableNode("d", 5.0) | ||
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5)) | ||
|
||
|
||
def test_basic_math_node_jax(): | ||
"""Test that we can perform computations via a BasicMathNode.""" | ||
node_a = SingleVariableNode("a", 10.0) | ||
node_b = SingleVariableNode("b", -5.0) | ||
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="jax") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Try with a math function. | ||
node_c = SingleVariableNode("c", 1000.0) | ||
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="jax") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 12.0 | ||
|
||
# Try with a second math function. | ||
node = BasicMathNode( | ||
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="jax" | ||
) | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == 5.0 | ||
|
||
# Test that we can reproduce the power function. | ||
node_d = SingleVariableNode("d", 5.0) | ||
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math") | ||
state = node.sample_parameters() | ||
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5)) | ||
|
||
|
||
def test_basic_math_node_autodiff_jax(): | ||
"""Test that we can do auto-differentiation with JAX.""" | ||
node_a = SingleVariableNode("a", 16.0, node_label="a_node") | ||
node_b = SingleVariableNode("b", 1000.0, node_label="b_node") | ||
|
||
# Create a basic math function and create tghe pytree. | ||
node = BasicMathNode( | ||
"sqrt(a) + 1.0 - log10(b)", a=node_a.a, b=node_b.b, node_label="diff_test", backend="jax" | ||
) | ||
state = node.sample_parameters() | ||
pytree = node.build_pytree(state) | ||
|
||
gr_func = jax.value_and_grad(node.resample_and_compute) | ||
values, gradients = gr_func(pytree) | ||
assert values == 2.0 | ||
assert gradients["a_node"]["a"] > 0.0 | ||
assert gradients["b_node"]["b"] < 0.0 |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Totally irrelevant to this PR, but as a grad student I've definitely wished for this sort of conversion as a callable library, especially if C stdlib was one of the "basic math" languages that could be converted.