Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create a BasicMathNode that can evaluate expressions given as a string #185

Merged
merged 3 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
185 changes: 185 additions & 0 deletions src/tdastro/math_nodes/basic_math_node.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
"""Nodes that perform basic math operations that can be specified as strings.

The goal of this library is to save users from needing to create a bunch of
small FunctionNodes to perform basic math.
"""

import ast

# Disable unused import because we need all of these imported
# so they can be used during evaluation of the node.
import math # noqa: F401

import jax.numpy as jnp # noqa: F401
import numpy as np # noqa: F401

from tdastro.base_models import FunctionNode


class BasicMathNode(FunctionNode):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Totally irrelevant to this PR, but as a grad student I've definitely wished for this sort of conversion as a callable library, especially if C stdlib was one of the "basic math" languages that could be converted.

"""A node that evaluates basic mathematical functions.

The BasicMathNode wraps Python's eval() function to sanitize the input string
and thus prevent the execution of arbitrary code. It also allows the user to write
the expression once and execute using math, numpy, or JAX. The names of the
variables in the expression must match the input variables provided by kwargs.

Example:
my_node = BasicMathNode(
"redshift + 10.0 * sin(phase)",
redshift=host.redshift,
phase=source.phase,
)

Attributes
----------
expression : `str`
The expression to evaluate.
backend : `str`
The math libary to use. Must be one of: math, numpy, or jax.

Parameters
----------
expression : `str`
The expression to evaluate.
backend : `str`
The math libary to use. Must be one of: math, numpy, or jax.
node_label : `str`, optional
An identifier (or name) for the current node.
**kwargs : `dict`, optional
Any additional keyword arguments. Every variable in the expression
must be included as a kwarg.
"""

# A list of supported Python operations. Used to prevent eval from
# running arbitrary python expressions. The Call and Name types are special
# cased so we can do checks and translations.
_supported_ast_nodes = (
ast.Module, # Top level object when parsed as exec.
ast.Expression, # Top level object when parsed as eval.
ast.Expr, # Math expressions.
ast.Constant, # Constant values.
ast.Load, # Load a variable - must come from an approved function or variable.
ast.Store, # Store value - must come from an approved function or variable.
ast.BinOp, # Binary operations
ast.Add,
ast.Sub,
ast.Mult,
ast.Div,
ast.FloorDiv,
ast.Mod,
ast.Pow,
ast.UnaryOp, # Uninary operations
ast.UAdd,
ast.USub,
ast.Invert,
)

# A map from a very limited set of supported math constant/function names to
# the corresponding names in [math, numpy, jax]. This is needed because
# a very few functions have different names in different libraries.
_math_map = {
"abs": ["abs", "np.abs", "jnp.abs"], # Special handling for math.
"acos": ["math.acos", "np.acos", "jnp.acos"],
"acosh": ["math.acosh", "np.acosh", "jnp.acosh"],
"asin": ["math.asin", "np.asin", "jnp.asin"],
"asinh": ["math.asinh", "np.asinh", "jnp.asinh"],
"atan": ["math.atan", "np.atan", "jnp.atan"],
"atan2": ["math.atan2", "np.atan2", "jnp.atan2"],
"cos": ["math.cos", "np.cos", "jnp.cos"],
"cosh": ["math.cosh", "np.cosh", "jnp.cosh"],
"ceil": ["math.ceil", "np.ceil", "jnp.ceil"],
"degrees": ["math.degrees", "np.degrees", "jnp.degrees"],
"deg2rad": ["math.radians", "np.deg2rad", "jnp.deg2rad"], # Special handling for math
"e": ["math.e", "np.e", "jnp.e"],
"exp": ["math.exp", "np.exp", "jnp.exp"],
"fabs": ["math.fabs", "np.fabs", "jnp.fabs"],
"floor": ["math.floor", "np.floor", "jnp.floor"],
"log": ["math.log", "np.log", "jnp.log"],
"log10": ["math.log10", "np.log10", "jnp.log10"],
"log2": ["math.log2", "np.log2", "jnp.log2"],
"max": ["max", "np.max", "jnp.max"], # Special handling for math
"min": ["min", "np.min", "jnp.min"], # Special handling for math
"pi": ["math.pi", "np.pi", "jnp.pi"],
"pow": ["math.pow", "np.power", "jnp.power"], # Special handling for numpy
"power": ["math.pow", "np.power", "jnp.power"], # Special handling for math
"radians": ["math.radians", "np.radians", "jnp.radians"],
"rad2deg": ["math.degrees", "np.rad2deg", "jnp.rad2deg"], # Special handling for math
"sin": ["math.sin", "np.sin", "jnp.sin"],
"sinh": ["math.sinh", "np.sinh", "jnp.sinh"],
"sqrt": ["math.sqrt", "np.sqrt", "jnp.sqrt"],
"tan": ["math.tan", "np.tan", "jnp.tan"],
"tanh": ["math.tanh", "np.tanh", "jnp.tanh"],
"trunc": ["math.trunc", "np.trunc", "jnp.trunc"],
}

def __init__(self, expression, backend="numpy", node_label=None, **kwargs):
if backend not in ["jax", "math", "numpy"]:
raise ValueError(f"Unsupported math backend {backend}")
self.backend = backend

# Check the expression is pure math and translate it into the correct backend.
self.expression = expression
self._prepare(**kwargs)

# Create a function from the expression. Note the expression has
# already been sanitized and validated via _prepare().
def eval_func(**kwargs):
return eval(self.expression, globals(), kwargs)

super().__init__(eval_func, node_label=node_label, **kwargs)

def __call__(self, **kwargs):
"""Evaluate the expression."""
return eval(self.expression, globals(), kwargs)

def _prepare(self, **kwargs):
"""Rewrite a python expression that consists of only basic math to use
the prespecified math library. Santizes the string to prevent
arbitrary code execution.

Parameters
----------
**kwargs : `dict`, optional
Any additional keyword arguments, including the variable
assignments.

Returns
-------
tree : `ast.*`
The root node of the parsed syntax tree.
"""
tree = ast.parse(self.expression)

# Walk the tree and confirm that it only contains the basic math.
for node in ast.walk(tree):
if isinstance(node, self._supported_ast_nodes):
# Nothing to do, this is a valid operation for the ast.
continue
elif isinstance(node, ast.Call):
# Check that function calls are only using items on the allow list.
if node.func.id not in self._math_map:
raise ValueError(f"Unsupported function {node.func.id}")
elif isinstance(node, ast.Name):
if node.id in kwargs:
# This is a user supplied variable.
continue
elif node.id in self._math_map:
# This is a math function or constant. Overwrite
if self.backend == "math":
node.id = self._math_map[node.id][0]
elif self.backend == "numpy":
node.id = self._math_map[node.id][1]
elif self.backend == "jax":
node.id = self._math_map[node.id][2]
else:
raise ValueError(
f"Unrecognized named variable or function {node.id}. "
"This could be because the function is not supported or "
"you forgot to include the variable as an argument."
)
else:
raise ValueError(f"Invalid part of expression {type(node)}")

# Convert the expression back into a string.
self.expression = ast.unparse(tree)
138 changes: 138 additions & 0 deletions tests/tdastro/math_nodes/test_basic_math_node.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import math

import jax
import pytest
from tdastro.math_nodes.basic_math_node import BasicMathNode
from tdastro.math_nodes.single_value_node import SingleVariableNode


def test_basic_math_node():
"""Test that we can perform computations via a BasicMathNode."""
node_a = SingleVariableNode("a", 10.0)
node_b = SingleVariableNode("b", -5.0)
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Try with a math function.
node_c = SingleVariableNode("c", 1000.0)
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 12.0

# Try with a second math function.
node = BasicMathNode(
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="math"
)
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Test that we can reproduce the power function.
node_d = SingleVariableNode("d", 5.0)
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5))


def test_basic_math_node_special_cases():
"""Test that we can handle some of the special cases for a BasicMathNode."""
node_a = SingleVariableNode("a", 180.0)
node = BasicMathNode("sin(deg2rad(x) + pi / 2.0)", x=node_a.a, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == pytest.approx(-1.0)


def test_basic_math_node_fail():
"""Test that we perform the needed checks for a math node."""
# Imports not allowed
with pytest.raises(ValueError):
_ = BasicMathNode("import os")

# Ifs not allowed (won't work with JAX)
with pytest.raises(ValueError):
_ = BasicMathNode("x if 1.0 else 1.0", x=2.0)

# We only allow functions on the allow list.
with pytest.raises(ValueError):
_ = BasicMathNode("fake_delete_everything_no_confirm('./')")
with pytest.raises(ValueError):
_ = BasicMathNode("median(10, 20)")

# All variables must be defined.
with pytest.raises(ValueError):
_ = BasicMathNode("x + y", x=1.0)


def test_basic_math_node_numpy():
"""Test that we can perform computations via a BasicMathNode."""
node_a = SingleVariableNode("a", 10.0)
node_b = SingleVariableNode("b", -5.0)
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="numpy")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Try with a math function.
node_c = SingleVariableNode("c", 1000.0)
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="numpy")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 12.0

# Try with a second math function.
node = BasicMathNode(
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="numpy"
)
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Test that we can reproduce the power function.
node_d = SingleVariableNode("d", 5.0)
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5))


def test_basic_math_node_jax():
"""Test that we can perform computations via a BasicMathNode."""
node_a = SingleVariableNode("a", 10.0)
node_b = SingleVariableNode("b", -5.0)
node = BasicMathNode("a + b", a=node_a.a, b=node_b.b, node_label="test", backend="jax")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Try with a math function.
node_c = SingleVariableNode("c", 1000.0)
node = BasicMathNode("a + b - log10(c)", a=10.0, b=5.0, c=node_c.c, node_label="test", backend="jax")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 12.0

# Try with a second math function.
node = BasicMathNode(
"sqrt(a) + b - log10(c)", a=16.0, b=4.0, c=node_c.c, node_label="test", backend="jax"
)
state = node.sample_parameters()
assert state["test"]["function_node_result"] == 5.0

# Test that we can reproduce the power function.
node_d = SingleVariableNode("d", 5.0)
node = BasicMathNode("a ** b", a=node_d.d, b=2.5, node_label="test", backend="math")
state = node.sample_parameters()
assert state["test"]["function_node_result"] == pytest.approx(math.pow(5.0, 2.5))


def test_basic_math_node_autodiff_jax():
"""Test that we can do auto-differentiation with JAX."""
node_a = SingleVariableNode("a", 16.0, node_label="a_node")
node_b = SingleVariableNode("b", 1000.0, node_label="b_node")

# Create a basic math function and create tghe pytree.
node = BasicMathNode(
"sqrt(a) + 1.0 - log10(b)", a=node_a.a, b=node_b.b, node_label="diff_test", backend="jax"
)
state = node.sample_parameters()
pytree = node.build_pytree(state)

gr_func = jax.value_and_grad(node.resample_and_compute)
values, gradients = gr_func(pytree)
assert values == 2.0
assert gradients["a_node"]["a"] > 0.0
assert gradients["b_node"]["b"] < 0.0
Loading