Skip to content

Commit

Permalink
Merge master into nightly-testing
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-mathlib4-bot committed Jan 5, 2024
2 parents d4ec3a9 + b180173 commit 14936aa
Show file tree
Hide file tree
Showing 27 changed files with 925 additions and 199 deletions.
2 changes: 2 additions & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2197,6 +2197,7 @@ import Mathlib.GroupTheory.GroupAction.Option
import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.GroupTheory.GroupAction.Prod
import Mathlib.GroupTheory.GroupAction.Quotient
import Mathlib.GroupTheory.GroupAction.Ring
import Mathlib.GroupTheory.GroupAction.Sigma
import Mathlib.GroupTheory.GroupAction.SubMulAction
import Mathlib.GroupTheory.GroupAction.SubMulAction.Pointwise
Expand Down Expand Up @@ -2974,6 +2975,7 @@ import Mathlib.Probability.ConditionalExpectation
import Mathlib.Probability.ConditionalProbability
import Mathlib.Probability.Density
import Mathlib.Probability.Distributions.Exponential
import Mathlib.Probability.Distributions.Gamma
import Mathlib.Probability.Distributions.Gaussian
import Mathlib.Probability.IdentDistrib
import Mathlib.Probability.Independence.Basic
Expand Down
5 changes: 2 additions & 3 deletions Mathlib/Algebra/Algebra/Subalgebra/Unitization.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,10 @@ Copyright (c) 2023 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/

import Mathlib.Algebra.Algebra.NonUnitalSubalgebra
import Mathlib.Algebra.Star.Subalgebra
import Mathlib.Algebra.Algebra.Unitization
import Mathlib.Algebra.Star.NonUnitalSubalgebra
import Mathlib.Algebra.Star.Subalgebra
import Mathlib.GroupTheory.GroupAction.Ring

/-!
# Relating unital and non-unital substructures
Expand Down
34 changes: 34 additions & 0 deletions Mathlib/Algebra/Group/Commute/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -58,4 +58,38 @@ protected theorem div_div_div_comm (hbc : Commute b c) (hbd : Commute b⁻¹ d)

end DivisionMonoid

section Group
variable [Group G] {a b : G}

@[to_additive (attr := simp)]
lemma inv_left_iff : Commute a⁻¹ b ↔ Commute a b := SemiconjBy.inv_symm_left_iff
#align commute.inv_left_iff Commute.inv_left_iff
#align add_commute.neg_left_iff AddCommute.neg_left_iff

@[to_additive] alias ⟨_, inv_left⟩ := inv_left_iff
#align commute.inv_left Commute.inv_left
#align add_commute.neg_left AddCommute.neg_left

@[to_additive (attr := simp)]
lemma inv_right_iff : Commute a b⁻¹ ↔ Commute a b := SemiconjBy.inv_right_iff
#align commute.inv_right_iff Commute.inv_right_iff
#align add_commute.neg_right_iff AddCommute.neg_right_iff

@[to_additive] alias ⟨_, inv_right⟩ := inv_right_iff
#align commute.inv_right Commute.inv_right
#align add_commute.neg_right AddCommute.neg_right

@[to_additive]
protected lemma inv_mul_cancel (h : Commute a b) : a⁻¹ * b * a = b := by
rw [h.inv_left.eq, inv_mul_cancel_right]
#align commute.inv_mul_cancel Commute.inv_mul_cancel
#align add_commute.neg_add_cancel AddCommute.neg_add_cancel

@[to_additive]
lemma inv_mul_cancel_assoc (h : Commute a b) : a⁻¹ * (b * a) = b := by
rw [← mul_assoc, h.inv_mul_cancel]
#align commute.inv_mul_cancel_assoc Commute.inv_mul_cancel_assoc
#align add_commute.neg_add_cancel_assoc AddCommute.neg_add_cancel_assoc

end Group
end Commute
61 changes: 0 additions & 61 deletions Mathlib/Algebra/Group/Commute/Units.lean
Original file line number Diff line number Diff line change
Expand Up @@ -99,65 +99,4 @@ theorem _root_.isUnit_mul_self_iff : IsUnit (a * a) ↔ IsUnit a :=
#align is_add_unit_add_self_iff isAddUnit_add_self_iff

end Monoid

section Group

variable [Group G] {a b : G}

@[to_additive]
theorem inv_right : Commute a b → Commute a b⁻¹ :=
SemiconjBy.inv_right
#align commute.inv_right Commute.inv_right
#align add_commute.neg_right AddCommute.neg_right

@[to_additive (attr := simp)]
theorem inv_right_iff : Commute a b⁻¹ ↔ Commute a b :=
SemiconjBy.inv_right_iff
#align commute.inv_right_iff Commute.inv_right_iff
#align add_commute.neg_right_iff AddCommute.neg_right_iff

@[to_additive]
theorem inv_left : Commute a b → Commute a⁻¹ b :=
SemiconjBy.inv_symm_left
#align commute.inv_left Commute.inv_left
#align add_commute.neg_left AddCommute.neg_left

@[to_additive (attr := simp)]
theorem inv_left_iff : Commute a⁻¹ b ↔ Commute a b :=
SemiconjBy.inv_symm_left_iff
#align commute.inv_left_iff Commute.inv_left_iff
#align add_commute.neg_left_iff AddCommute.neg_left_iff

@[to_additive]
protected theorem inv_mul_cancel (h : Commute a b) : a⁻¹ * b * a = b := by
rw [h.inv_left.eq, inv_mul_cancel_right]
#align commute.inv_mul_cancel Commute.inv_mul_cancel
#align add_commute.neg_add_cancel AddCommute.neg_add_cancel

@[to_additive]
theorem inv_mul_cancel_assoc (h : Commute a b) : a⁻¹ * (b * a) = b := by
rw [← mul_assoc, h.inv_mul_cancel]
#align commute.inv_mul_cancel_assoc Commute.inv_mul_cancel_assoc
#align add_commute.neg_add_cancel_assoc AddCommute.neg_add_cancel_assoc

end Group

end Commute

section CommGroup

variable [CommGroup G] (a b : G)

@[to_additive (attr := simp)]
theorem inv_mul_cancel_comm : a⁻¹ * b * a = b :=
(Commute.all a b).inv_mul_cancel
#align inv_mul_cancel_comm inv_mul_cancel_comm
#align neg_add_cancel_comm neg_add_cancel_comm

@[to_additive (attr := simp)]
theorem inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b :=
(Commute.all a b).inv_mul_cancel_assoc
#align inv_mul_cancel_comm_assoc inv_mul_cancel_comm_assoc
#align neg_add_cancel_comm_assoc neg_add_cancel_comm_assoc

end CommGroup
14 changes: 14 additions & 0 deletions Mathlib/Algebra/Group/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -998,6 +998,10 @@ theorem zpow_ofNat (a : G) : ∀ n : ℕ, a ^ (n : ℤ) = a ^ n
#align zpow_of_nat zpow_ofNat
#align of_nat_zsmul ofNat_zsmul

@[to_additive (attr := simp, norm_cast) coe_nat_zsmul]
lemma zpow_coe_nat (a : G) (n : ℕ) : a ^ (Nat.cast n : ℤ) = a ^ n := zpow_ofNat ..
#align coe_nat_zsmul coe_nat_zsmul

theorem zpow_negSucc (a : G) (n : ℕ) : a ^ (Int.negSucc n) = (a ^ (n + 1))⁻¹ := by
rw [← zpow_ofNat]
exact DivInvMonoid.zpow_neg' n a
Expand Down Expand Up @@ -1263,6 +1267,16 @@ instance (priority := 100) CommGroup.toCancelCommMonoid : CancelCommMonoid G :=
instance (priority := 100) CommGroup.toDivisionCommMonoid : DivisionCommMonoid G :=
{ ‹CommGroup G›, Group.toDivisionMonoid with }

@[to_additive (attr := simp)] lemma inv_mul_cancel_comm (a b : G) : a⁻¹ * b * a = b := by
rw [mul_comm, mul_inv_cancel_left]
#align inv_mul_cancel_comm inv_mul_cancel_comm
#align neg_add_cancel_comm neg_add_cancel_comm

@[to_additive (attr := simp)] lemma inv_mul_cancel_comm_assoc (a b : G) : a⁻¹ * (b * a) = b := by
rw [mul_comm, mul_inv_cancel_right]
#align inv_mul_cancel_comm_assoc inv_mul_cancel_comm_assoc
#align neg_add_cancel_comm_assoc neg_add_cancel_comm_assoc

end CommGroup

/-! We initialize all projections for `@[simps]` here, so that we don't have to do it in later
Expand Down
36 changes: 27 additions & 9 deletions Mathlib/Algebra/Group/Semiconj/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,29 +9,47 @@ import Mathlib.Algebra.Group.Basic
#align_import algebra.group.semiconj from "leanprover-community/mathlib"@"a148d797a1094ab554ad4183a4ad6f130358ef64"

/-!
# Lemmas about semiconjugate elements of a semigroup
# Lemmas about semiconjugate elements of a group
-/

namespace SemiconjBy
variable {G : Type*}

section DivisionMonoid

variable {G : Type*} [DivisionMonoid G] {a x y : G}
variable [DivisionMonoid G] {a x y : G}

@[to_additive (attr := simp)]
theorem inv_inv_symm_iff : SemiconjBy a⁻¹ x⁻¹ y⁻¹ ↔ SemiconjBy a y x :=
inv_involutive.injective.eq_iff.symm.trans <| by
rw [mul_inv_rev, mul_inv_rev, inv_inv, inv_inv, inv_inv, eq_comm, SemiconjBy]
theorem inv_inv_symm_iff : SemiconjBy a⁻¹ x⁻¹ y⁻¹ ↔ SemiconjBy a y x := by
simp_rw [SemiconjBy, ← mul_inv_rev, inv_inj, eq_comm]
#align semiconj_by.inv_inv_symm_iff SemiconjBy.inv_inv_symm_iff
#align add_semiconj_by.neg_neg_symm_iff AddSemiconjBy.neg_neg_symm_iff

@[to_additive]
theorem inv_inv_symm : SemiconjBy a x y → SemiconjBy a⁻¹ y⁻¹ x⁻¹ :=
inv_inv_symm_iff.2
@[to_additive] alias ⟨_, inv_inv_symm⟩ := inv_inv_symm_iff
#align semiconj_by.inv_inv_symm SemiconjBy.inv_inv_symm
#align add_semiconj_by.neg_neg_symm AddSemiconjBy.neg_neg_symm

end DivisionMonoid

section Group
variable [Group G] {a x y : G}

@[to_additive (attr := simp)] lemma inv_symm_left_iff : SemiconjBy a⁻¹ y x ↔ SemiconjBy a x y := by
simp_rw [SemiconjBy, eq_mul_inv_iff_mul_eq, mul_assoc, inv_mul_eq_iff_eq_mul, eq_comm]
#align semiconj_by.inv_symm_left_iff SemiconjBy.inv_symm_left_iff
#align add_semiconj_by.neg_symm_left_iff AddSemiconjBy.neg_symm_left_iff

@[to_additive] alias ⟨_, inv_symm_left⟩ := inv_symm_left_iff
#align semiconj_by.inv_symm_left SemiconjBy.inv_symm_left
#align add_semiconj_by.neg_symm_left AddSemiconjBy.neg_symm_left

@[to_additive (attr := simp)] lemma inv_right_iff : SemiconjBy a x⁻¹ y⁻¹ ↔ SemiconjBy a x y := by
rw [← inv_symm_left_iff, inv_inv_symm_iff]
#align add_semiconj_by.neg_right_iff AddSemiconjBy.neg_right_iff

@[to_additive] alias ⟨_, inv_right⟩ := inv_right_iff
#align semiconj_by.inv_right SemiconjBy.inv_right
#align add_semiconj_by.neg_right AddSemiconjBy.neg_right

end Group
end SemiconjBy
32 changes: 0 additions & 32 deletions Mathlib/Algebra/Group/Semiconj/Units.lean
Original file line number Diff line number Diff line change
Expand Up @@ -88,38 +88,6 @@ theorem units_val_iff {a x y : Mˣ} : SemiconjBy (a : M) x y ↔ SemiconjBy a x
#align add_semiconj_by.add_units_coe_iff AddSemiconjBy.addUnits_val_iff

end Monoid

section Group

variable [Group G] {a x y : G}

@[to_additive (attr := simp)]
theorem inv_right_iff : SemiconjBy a x⁻¹ y⁻¹ ↔ SemiconjBy a x y :=
@units_inv_right_iff G _ a ⟨x, x⁻¹, mul_inv_self x, inv_mul_self x⟩
⟨y, y⁻¹, mul_inv_self y, inv_mul_self y⟩
#align semiconj_by.inv_right_iff SemiconjBy.inv_right_iff
#align add_semiconj_by.neg_right_iff AddSemiconjBy.neg_right_iff

@[to_additive]
theorem inv_right : SemiconjBy a x y → SemiconjBy a x⁻¹ y⁻¹ :=
inv_right_iff.2
#align semiconj_by.inv_right SemiconjBy.inv_right
#align add_semiconj_by.neg_right AddSemiconjBy.neg_right

@[to_additive (attr := simp)]
theorem inv_symm_left_iff : SemiconjBy a⁻¹ y x ↔ SemiconjBy a x y :=
@units_inv_symm_left_iff G _ ⟨a, a⁻¹, mul_inv_self a, inv_mul_self a⟩ _ _
#align semiconj_by.inv_symm_left_iff SemiconjBy.inv_symm_left_iff
#align add_semiconj_by.neg_symm_left_iff AddSemiconjBy.neg_symm_left_iff

@[to_additive]
theorem inv_symm_left : SemiconjBy a x y → SemiconjBy a⁻¹ y x :=
inv_symm_left_iff.2
#align semiconj_by.inv_symm_left SemiconjBy.inv_symm_left
#align add_semiconj_by.neg_symm_left AddSemiconjBy.neg_symm_left

end Group

end SemiconjBy

/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/GroupPower/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@ Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
-/
import Mathlib.Algebra.Group.Commute.Units
import Mathlib.Algebra.Group.Commute.Basic
import Mathlib.Algebra.GroupWithZero.Defs
import Mathlib.Tactic.Convert
import Mathlib.Tactic.Common

#align_import algebra.group_power.basic from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383"

Expand Down
37 changes: 1 addition & 36 deletions Mathlib/Algebra/GroupPower/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ import Mathlib.Algebra.Order.Monoid.WithTop
import Mathlib.Data.Nat.Pow
import Mathlib.Data.Int.Cast.Lemmas
import Mathlib.Algebra.Group.Opposite
import Mathlib.GroupTheory.GroupAction.Ring

#align_import algebra.group_power.lemmas from "leanprover-community/mathlib"@"a07d750983b94c530ab69a726862c2ab6802b38c"

Expand Down Expand Up @@ -511,24 +512,6 @@ theorem nsmul_eq_mul [NonAssocSemiring R] (n : ℕ) (a : R) : n • a = n * a :=
#align nsmul_eq_mul nsmul_eq_mulₓ
-- typeclasses do not match up exactly.

/-- Note that `AddCommMonoid.nat_smulCommClass` requires stronger assumptions on `R`. -/
instance NonUnitalNonAssocSemiring.nat_smulCommClass [NonUnitalNonAssocSemiring R] :
SMulCommClass ℕ R R :=
fun n x y => by
induction' n with n ih
· simp [zero_nsmul]
· simp_rw [succ_nsmul, smul_eq_mul, mul_add, ← smul_eq_mul, ih]⟩
#align non_unital_non_assoc_semiring.nat_smul_comm_class NonUnitalNonAssocSemiring.nat_smulCommClass

/-- Note that `AddCommMonoid.nat_isScalarTower` requires stronger assumptions on `R`. -/
instance NonUnitalNonAssocSemiring.nat_isScalarTower [NonUnitalNonAssocSemiring R] :
IsScalarTower ℕ R R :=
fun n x y => by
induction' n with n ih
· simp [zero_nsmul]
· simp_rw [succ_nsmul, ← ih, smul_eq_mul, add_mul]⟩
#align non_unital_non_assoc_semiring.nat_is_scalar_tower NonUnitalNonAssocSemiring.nat_isScalarTower

@[simp, norm_cast]
theorem Nat.cast_pow [Semiring R] (n m : ℕ) : (↑(n ^ m) : R) = (↑n : R) ^ m := by
induction' m with m ih
Expand Down Expand Up @@ -596,24 +579,6 @@ theorem zsmul_eq_mul' [Ring R] (a : R) (n : ℤ) : n • a = a * n := by
rw [zsmul_eq_mul, (n.cast_commute a).eq]
#align zsmul_eq_mul' zsmul_eq_mul'

/-- Note that `AddCommGroup.int_smulCommClass` requires stronger assumptions on `R`. -/
instance NonUnitalNonAssocRing.int_smulCommClass [NonUnitalNonAssocRing R] :
SMulCommClass ℤ R R :=
fun n x y =>
match n with
| (n : ℕ) => by simp_rw [coe_nat_zsmul, smul_comm]
| -[n+1] => by simp_rw [negSucc_zsmul, smul_eq_mul, mul_neg, mul_smul_comm]⟩
#align non_unital_non_assoc_ring.int_smul_comm_class NonUnitalNonAssocRing.int_smulCommClass

/-- Note that `AddCommGroup.int_isScalarTower` requires stronger assumptions on `R`. -/
instance NonUnitalNonAssocRing.int_isScalarTower [NonUnitalNonAssocRing R] :
IsScalarTower ℤ R R :=
fun n x y =>
match n with
| (n : ℕ) => by simp_rw [coe_nat_zsmul, smul_assoc]
| -[n+1] => by simp_rw [negSucc_zsmul, smul_eq_mul, neg_mul, smul_mul_assoc]⟩
#align non_unital_non_assoc_ring.int_is_scalar_tower NonUnitalNonAssocRing.int_isScalarTower

theorem zsmul_int_int (a b : ℤ) : a • b = a * b := by simp
#align zsmul_int_int zsmul_int_int

Expand Down
9 changes: 9 additions & 0 deletions Mathlib/Algebra/GroupPower/NegOnePow.lean
Original file line number Diff line number Diff line change
Expand Up @@ -86,4 +86,13 @@ lemma negOnePow_eq_iff (n₁ n₂ : ℤ) :
Int.even_iff_not_odd, Int.even_iff_not_odd]
tauto

@[simp]
lemma negOnePow_mul_self (n : ℤ) : (n * n).negOnePow = n.negOnePow := by
suffices Even (n * (n - 1)) by
simpa [mul_sub, mul_one, negOnePow_eq_iff] using this
rw [even_mul]
by_cases h : Even (n - 1)
· exact Or.inr h
· exact Or.inl (by simpa using Int.even_add_one.2 h)

end Int
Loading

0 comments on commit 14936aa

Please sign in to comment.