Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move ControlNetXS into Community Folder #6316

Merged
merged 13 commits into from
Dec 27, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,12 @@
from torch.nn import functional as F
from torch.nn.modules.normalization import GroupNorm

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from .attention_processor import USE_PEFT_BACKEND, AttentionProcessor
from .autoencoders import AutoencoderKL
from .lora import LoRACompatibleConv
from .modeling_utils import ModelMixin
from .unet_2d_blocks import (
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProcessor
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
Expand All @@ -37,7 +36,8 @@
UpBlock2D,
Upsample2D,
)
from .unet_2d_condition import UNet2DConditionModel
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput, logging


logger = logging.get_logger(__name__) # pylint: disable=invalid-name
Expand Down
54 changes: 54 additions & 0 deletions examples/community/controlnetxs/infer_sd_controlnetxs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# !pip install opencv-python transformers accelerate
import argparse

import cv2
import numpy as np
import torch
from controlnetxs import ControlNetXSModel
from PIL import Image
from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline

from diffusers.utils import load_image


parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting")
parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7)
parser.add_argument("--image_path", type=str, default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
parser.add_argument("--num_inference_steps", type=int, default=50)

args = parser.parse_args()

prompt = args.prompt
negative_prompt = args.negative_prompt
# download an image
image = load_image(args.image_path)

# initialize the models and pipeline
controlnet_conditioning_scale = args.controlnet_conditioning_scale
controlnet = ControlNetXSModel.from_pretrained(
"UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# get canny image
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

num_inference_steps = args.num_inference_steps

# generate image
image = pipe(
prompt,
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=num_inference_steps
).images[0]
image.save("cnxs_sd.canny.png")
53 changes: 53 additions & 0 deletions examples/community/controlnetxs/infer_sdxl_controlnetxs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# !pip install opencv-python transformers accelerate
import argparse

import cv2
import numpy as np
import torch
from controlnetxs import ControlNetXSModel
from PIL import Image
from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline

from diffusers.utils import load_image


parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting")
parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7)
parser.add_argument("--image_path", type=str, default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
parser.add_argument("--num_inference_steps", type=int, default=50)

args = parser.parse_args()

prompt = args.prompt
negative_prompt = args.negative_prompt
# download an image
image = load_image(args.image_path)
# initialize the models and pipeline
controlnet_conditioning_scale = args.controlnet_conditioning_scale
controlnet = ControlNetXSModel.from_pretrained(
"UmerHA/ConrolNetXS-SDXL-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# get canny image
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

num_inference_steps = args.num_inference_steps

# generate image
image = pipe(
prompt,
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=num_inference_steps
).images[0]
image.save("cnxs_sdxl.canny.png")
Original file line number Diff line number Diff line change
Expand Up @@ -19,74 +19,30 @@
import PIL.Image
import torch
import torch.nn.functional as F
from controlnetxs import ControlNetXSModel
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor


logger = logging.get_logger(__name__) # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetXSPipeline, ControlNetXSModel
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch

>>> import cv2
>>> from PIL import Image

>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
>>> negative_prompt = "low quality, bad quality, sketches"

>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
... )

>>> # initialize the models and pipeline
>>> controlnet_conditioning_scale = 0.5
>>> controlnet = ControlNetXSModel.from_pretrained(
... "UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
... "stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()

>>> # get canny image
>>> image = np.array(image)
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # generate image
>>> image = pipe(
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
... ).images[0]
```
"""


class StableDiffusionControlNetXSPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
):
Expand Down Expand Up @@ -669,7 +625,6 @@ def disable_freeu(self):
self.unet.disable_freeu()

@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,76 +21,36 @@
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers.utils.import_utils import is_invisible_watermark_available

from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel
from ...models.attention_processor import (
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ControlNetXSModel, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.import_utils import is_invisible_watermark_available
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor


if is_invisible_watermark_available():
from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker


logger = logging.get_logger(__name__) # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSModel, AutoencoderKL
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch

>>> import cv2
>>> from PIL import Image

>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
>>> negative_prompt = "low quality, bad quality, sketches"

>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
... )

>>> # initialize the models and pipeline
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
>>> controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SDXL-canny", torch_dtype=torch.float16)
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
>>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()

>>> # get canny image
>>> image = np.array(image)
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)

>>> # generate image
>>> image = pipe(
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
... ).images[0]
```
"""


class StableDiffusionXLControlNetXSPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
):
Expand Down Expand Up @@ -730,7 +690,6 @@ def disable_freeu(self):
self.unet.disable_freeu()

@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
Expand Down
5 changes: 0 additions & 5 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,6 @@
"AutoencoderTiny",
"ConsistencyDecoderVAE",
"ControlNetModel",
"ControlNetXSModel",
"Kandinsky3UNet",
"ModelMixin",
"MotionAdapter",
Expand Down Expand Up @@ -256,7 +255,6 @@
"StableDiffusionControlNetImg2ImgPipeline",
"StableDiffusionControlNetInpaintPipeline",
"StableDiffusionControlNetPipeline",
"StableDiffusionControlNetXSPipeline",
"StableDiffusionDepth2ImgPipeline",
"StableDiffusionDiffEditPipeline",
"StableDiffusionGLIGENPipeline",
Expand All @@ -280,7 +278,6 @@
"StableDiffusionXLControlNetImg2ImgPipeline",
"StableDiffusionXLControlNetInpaintPipeline",
"StableDiffusionXLControlNetPipeline",
"StableDiffusionXLControlNetXSPipeline",
"StableDiffusionXLImg2ImgPipeline",
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLInstructPix2PixPipeline",
Expand Down Expand Up @@ -617,7 +614,6 @@
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionControlNetXSPipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionGLIGENPipeline,
Expand All @@ -641,7 +637,6 @@
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLControlNetXSPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLInstructPix2PixPipeline,
Expand Down
2 changes: 0 additions & 2 deletions src/diffusers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
_import_structure["controlnet"] = ["ControlNetModel"]
_import_structure["controlnetxs"] = ["ControlNetXSModel"]
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
Expand Down Expand Up @@ -67,7 +66,6 @@
ConsistencyDecoderVAE,
)
from .controlnet import ControlNetModel
from .controlnetxs import ControlNetXSModel
from .dual_transformer_2d import DualTransformer2DModel
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin
Expand Down
Loading
Loading