Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix SDXL Inpainting from single file with Refiner Model #6147

Merged
merged 3 commits into from
Dec 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/diffusers/loaders/single_file.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,10 +169,12 @@ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
load_safety_checker = kwargs.pop("load_safety_checker", True)
prediction_type = kwargs.pop("prediction_type", None)
text_encoder = kwargs.pop("text_encoder", None)
text_encoder_2 = kwargs.pop("text_encoder_2", None)
vae = kwargs.pop("vae", None)
controlnet = kwargs.pop("controlnet", None)
adapter = kwargs.pop("adapter", None)
tokenizer = kwargs.pop("tokenizer", None)
tokenizer_2 = kwargs.pop("tokenizer_2", None)

torch_dtype = kwargs.pop("torch_dtype", None)

Expand Down Expand Up @@ -274,8 +276,10 @@ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
load_safety_checker=load_safety_checker,
prediction_type=prediction_type,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
original_config_file=original_config_file,
config_files=config_files,
local_files_only=local_files_only,
Expand Down
130 changes: 59 additions & 71 deletions src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -1153,7 +1153,9 @@ def download_from_original_stable_diffusion_ckpt(
vae_path=None,
vae=None,
text_encoder=None,
text_encoder_2=None,
tokenizer=None,
tokenizer_2=None,
config_files=None,
) -> DiffusionPipeline:
"""
Expand Down Expand Up @@ -1232,7 +1234,9 @@ def download_from_original_stable_diffusion_ckpt(
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
StableDiffusionUpscalePipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
StableUnCLIPImg2ImgPipeline,
StableUnCLIPPipeline,
Expand Down Expand Up @@ -1339,7 +1343,11 @@ def download_from_original_stable_diffusion_ckpt(
else:
pipeline_class = StableDiffusionXLPipeline if model_type == "SDXL" else StableDiffusionXLImg2ImgPipeline

if num_in_channels is None and pipeline_class == StableDiffusionInpaintPipeline:
if num_in_channels is None and pipeline_class in [
StableDiffusionInpaintPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetInpaintPipeline,
]:
num_in_channels = 9
if num_in_channels is None and pipeline_class == StableDiffusionUpscalePipeline:
num_in_channels = 7
Expand Down Expand Up @@ -1686,7 +1694,9 @@ def download_from_original_stable_diffusion_ckpt(
feature_extractor=feature_extractor,
)
elif model_type in ["SDXL", "SDXL-Refiner"]:
if model_type == "SDXL":
is_refiner = model_type == "SDXL-Refiner"

if (is_refiner is False) and (tokenizer is None):
try:
tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14", local_files_only=local_files_only
Expand All @@ -1695,7 +1705,11 @@ def download_from_original_stable_diffusion_ckpt(
raise ValueError(
f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'."
)

if (is_refiner is False) and (text_encoder is None):
text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only)

if tokenizer_2 is None:
try:
tokenizer_2 = CLIPTokenizer.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!", local_files_only=local_files_only
Expand All @@ -1705,95 +1719,69 @@ def download_from_original_stable_diffusion_ckpt(
f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' with `pad_token` set to '!'."
)

if text_encoder_2 is None:
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
config_kwargs = {"projection_dim": 1280}
text_encoder_2 = convert_open_clip_checkpoint(
checkpoint,
config_name,
prefix="conditioner.embedders.1.model.",
has_projection=True,
local_files_only=local_files_only,
**config_kwargs,
)

if is_accelerate_available(): # SBM Now move model to cpu.
if model_type in ["SDXL", "SDXL-Refiner"]:
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)
prefix = "conditioner.embedders.0.model." if is_refiner else "conditioner.embedders.1.model."

if controlnet:
pipe = pipeline_class(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
force_zeros_for_empty_prompt=True,
)
elif adapter:
pipe = pipeline_class(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
adapter=adapter,
scheduler=scheduler,
force_zeros_for_empty_prompt=True,
)
else:
pipe = pipeline_class(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=True,
)
else:
tokenizer = None
text_encoder = None
try:
tokenizer_2 = CLIPTokenizer.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!", local_files_only=local_files_only
)
except Exception:
raise ValueError(
f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' with `pad_token` set to '!'."
)
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
config_kwargs = {"projection_dim": 1280}
text_encoder_2 = convert_open_clip_checkpoint(
checkpoint,
config_name,
prefix="conditioner.embedders.0.model.",
prefix=prefix,
has_projection=True,
local_files_only=local_files_only,
**config_kwargs,
)

if is_accelerate_available(): # SBM Now move model to cpu.
if model_type in ["SDXL", "SDXL-Refiner"]:
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)
if is_accelerate_available(): # SBM Now move model to cpu.
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)

pipe = StableDiffusionXLImg2ImgPipeline(
if controlnet:
pipe = pipeline_class(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
force_zeros_for_empty_prompt=True,
)
elif adapter:
pipe = pipeline_class(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
adapter=adapter,
scheduler=scheduler,
requires_aesthetics_score=True,
force_zeros_for_empty_prompt=False,
force_zeros_for_empty_prompt=True,
)

else:
pipeline_kwargs = {
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"unet": unet,
"scheduler": scheduler,
}

if (pipeline_class == StableDiffusionXLImg2ImgPipeline) or (
pipeline_class == StableDiffusionXLInpaintPipeline
):
pipeline_kwargs.update({"requires_aesthetics_score": is_refiner})

if is_refiner:
pipeline_kwargs.update({"force_zeros_for_empty_prompt": False})

pipe = pipeline_class(**pipeline_kwargs)
else:
text_config = create_ldm_bert_config(original_config)
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
Expand Down
Loading