Skip to content

guyucowboy/NAS-Lung

 
 

Repository files navigation

NAS-Lung

3D NAS for Pulmonary Nodules Classification

Jiang et al. Learning Efficient, Explainable and Discriminative Representations for Pulmonary Nodules Classification. (under review)

Architecture

Architecture

Results

NASLung9

model Accu. Sens. Spec. F1 Score para.(M)
Multi-crop CNN 87.14 - - - -
Nodule-level 2D CNN 87.30 88.50 86.00 87.23 -
Vanilla 3D CNN 87.40 89.40 85.20 87.25 -
DeepLung 90.44 81.42 - - 141.57
AE-DPN 90.24 92.04 88.94 90.45 678.69
3D-NAS (ours) 88.71 85.85 91.17 87.20 7.99
NASLung9 (ours) 91.72 90.21 92.85 90.81 63.53

3D-NAS

Model Accu. Sens. Spec. F1 Score para.
Model-A 88.71 85.85 91.17 87.20 7.99
Model-B 88.16 87.11 88.61 86.90 8.05
Model-C 88.46 83.83 92.15 86.68 8.05
Model-D 87.59 83.64 90.52 85.85 0.63
Model-E 88.27 82.41 92.92 86.17 7.79
Model-F 88.13 87.86 88.89 86.88 11.28
Model-G 88.61 85.41 91.40 87.02 11.33
Model-H 87.94 83.79 91.10 86.13 11.28
Model-I 88.11 86.08 89.73 86.64 11.33

Prerequisites

  • Linux or similar environment
  • Python 3.7
  • Pytorch 0.4.1
  • NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/fei-hdu/NAS-Lung
    cd NAS-Lung
  • Install PyTorch 0.4+ and torchvision from http://pytorch.org and other dependencies (e.g., visdom and dominate). You can install all the dependencies by

    pip install -r requirments.txt
  • Download Dataset LIDC-IDRI

Neural Architecture Search

python search_main.py --train_data_path {train_data_path}  --test_data_path {test_data_path} --save_module_path {save_module_path}

Train/Test

  • Train a model

    sh run_training.sh
  • Test a model

    python test.py --test_data_path {test_data_path} --preprocess_path {preprocess_path} --model_path {model_path}

DataSet

Model Result

Training/Test Tips

  • Best practice for training and testing your models.
  • Feel free to ask any questions about coding. Fuhao Shen, [email protected]

Acknowledgement

Selected References

  • S. Armato III, G. et al., Data from LIDC-IDRI, The Cancer Imaging Archivedoi:http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX. URL https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.
  • X. Li, Y. Zhou, Z. Pan, J. Feng, Partial order pruning: For best speed/accuracy trade-off in neural architecture search (2019) 9145–9153.
  • S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3–19.
  • W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  • T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey, Journal of Machine Learning Research 20 (55) (2019) 1–21.
  • W. Zhu, C. Liu, W. Fan, X. Xie, Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification, in: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 673–681.

About

3D NAS for Pulmonary Nodules Classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 58.3%
  • Jupyter Notebook 41.6%
  • Shell 0.1%