3D NAS for Pulmonary Nodules Classification
Jiang et al. Learning Efficient, Explainable and Discriminative Representations for Pulmonary Nodules Classification. (under review)
model | Accu. | Sens. | Spec. | F1 Score | para.(M) |
---|---|---|---|---|---|
Multi-crop CNN | 87.14 | - | - | - | - |
Nodule-level 2D CNN | 87.30 | 88.50 | 86.00 | 87.23 | - |
Vanilla 3D CNN | 87.40 | 89.40 | 85.20 | 87.25 | - |
DeepLung | 90.44 | 81.42 | - | - | 141.57 |
AE-DPN | 90.24 | 92.04 | 88.94 | 90.45 | 678.69 |
3D-NAS (ours) | 88.71 | 85.85 | 91.17 | 87.20 | 7.99 |
NASLung9 (ours) | 91.72 | 90.21 | 92.85 | 90.81 | 63.53 |
Model | Accu. | Sens. | Spec. | F1 Score | para. |
---|---|---|---|---|---|
Model-A | 88.71 | 85.85 | 91.17 | 87.20 | 7.99 |
Model-B | 88.16 | 87.11 | 88.61 | 86.90 | 8.05 |
Model-C | 88.46 | 83.83 | 92.15 | 86.68 | 8.05 |
Model-D | 87.59 | 83.64 | 90.52 | 85.85 | 0.63 |
Model-E | 88.27 | 82.41 | 92.92 | 86.17 | 7.79 |
Model-F | 88.13 | 87.86 | 88.89 | 86.88 | 11.28 |
Model-G | 88.61 | 85.41 | 91.40 | 87.02 | 11.33 |
Model-H | 87.94 | 83.79 | 91.10 | 86.13 | 11.28 |
Model-I | 88.11 | 86.08 | 89.73 | 86.64 | 11.33 |
- Linux or similar environment
- Python 3.7
- Pytorch 0.4.1
- NVIDIA GPU + CUDA CuDNN
-
Clone this repo:
git clone https://github.com/fei-hdu/NAS-Lung cd NAS-Lung
-
Install PyTorch 0.4+ and torchvision from http://pytorch.org and other dependencies (e.g., visdom and dominate). You can install all the dependencies by
pip install -r requirments.txt
-
Download Dataset LIDC-IDRI
python search_main.py --train_data_path {train_data_path} --test_data_path {test_data_path} --save_module_path {save_module_path}
-
Train a model
sh run_training.sh
-
Test a model
python test.py --test_data_path {test_data_path} --preprocess_path {preprocess_path} --model_path {model_path}
- our final result can be download:Google Drive
- Best practice for training and testing your models.
- Feel free to ask any questions about coding. Fuhao Shen,
[email protected]
- Our work/code is inspired by Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search, CVPR 2019.
- S. Armato III, G. et al., Data from LIDC-IDRI, The Cancer Imaging Archivedoi:http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX. URL https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.
- X. Li, Y. Zhou, Z. Pan, J. Feng, Partial order pruning: For best speed/accuracy trade-off in neural architecture search (2019) 9145–9153.
- S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3–19.
- W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey, Journal of Machine Learning Research 20 (55) (2019) 1–21.
- W. Zhu, C. Liu, W. Fan, X. Xie, Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification, in: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 673–681.