Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gdr 2199 #129

Merged
merged 22 commits into from
Feb 8, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ Type: Package
Package: gDRcore
Title: Processing functions and interface to process and analyze drug
dose-response data
Version: 1.1.2
Date: 2023-12-15
Version: 1.1.3
Date: 2024-01-03
Authors@R: c(
person("Bartosz", "Czech", , "[email protected]", role = "aut"),
person("Arkadiusz", "Gladki", role=c("cre", "aut"), email="[email protected]"),
Expand Down
4 changes: 4 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
## 1.1.3 (2024-01-03)
- simplify logic of assays for combination data
- rename `matrix` into `combination`

## 1.1.2 (2023-12-15)
- fix issue with wrong assignment of `untreated` records

Expand Down
26 changes: 20 additions & 6 deletions R/combinations-calculate_matrix_metric.R
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,13 @@ NULL
#' calculate_HSA(sa1, "conc", sa2, "conc2", "x")
bczech marked this conversation as resolved.
Show resolved Hide resolved
#' @export
calculate_HSA <- function(sa1, series_id1, sa2, series_id2, metric) {
.calculate_matrix_metric(sa1, series_id1, sa2, series_id2, metric, FXN = pmin)
.calculate_matrix_metric(sa1,
series_id1,
sa2,
series_id2,
metric,
FXN = pmin,
measured_col = "mx")
}


Expand All @@ -50,7 +56,12 @@ calculate_HSA <- function(sa1, series_id1, sa2, series_id2, metric) {
#' sa2 <- data.table::data.table(conc = rep(0, n), conc2 = seq(n), x = seq(n))
#' calculate_Bliss(sa1, "conc", sa2, "conc2", "x")
bczech marked this conversation as resolved.
Show resolved Hide resolved
#' @export
calculate_Bliss <- function(sa1, series_id1, sa2, series_id2, metric) {
calculate_Bliss <- function(sa1,
series_id1,
sa2,
series_id2,
metric,
measured_col = "mx") {
if (metric %in% c("GRvalue", "GR")) {
lambda <- function(x, y) {
ifelse(x < 0 | y < 0,
Expand Down Expand Up @@ -80,7 +91,8 @@ calculate_Bliss <- function(sa1, series_id1, sa2, series_id2, metric) {
sa2,
series_id2,
metric,
FXN = lambda
FXN = lambda,
measured_col = measured_col
)
}

Expand All @@ -89,15 +101,17 @@ calculate_Bliss <- function(sa1, series_id1, sa2, series_id2, metric) {
series_id1,
sa2,
series_id2,
metric, FXN) {
metric,
FXN,
measured_col = "x") {
checkmate::assert_data_table(sa1)
checkmate::assert_data_table(sa2)

checkmate::assert_true(all(sa1[[series_id2]] == 0L))
checkmate::assert_true(all(sa2[[series_id1]] == 0L))

data.table::setnames(sa1, "x", "metric1", skip_absent = TRUE)
data.table::setnames(sa2, "x", "metric2", skip_absent = TRUE)
data.table::setnames(sa1, measured_col, "metric1", skip_absent = TRUE)
data.table::setnames(sa2, measured_col, "metric2", skip_absent = TRUE)

u <- data.table::CJ(sa1[[series_id1]], sa2[[series_id2]])
colnames(u) <- c(series_id1, series_id2)
Expand Down
4 changes: 2 additions & 2 deletions R/combinations-isobolograms.R
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ calculate_Loewe <- function(


get_isocutoffs <- function(df_mean, normalization_type) {
if (min(df_mean[normalization_type == normalization_type, x], na.rm = TRUE) > 0.7) {
if (min(df_mean[normalization_type == normalization_type, mx], na.rm = TRUE) > 0.7) {
iso_cutoffs <- NULL
} else {
if (normalization_type == "GR") {
Expand All @@ -350,7 +350,7 @@ get_isocutoffs <- function(df_mean, normalization_type) {
max(
max_val,
ceiling(
20 * min(df_mean[normalization_type == normalization_type, x] + 0.08, na.rm = TRUE)
20 * min(df_mean[normalization_type == normalization_type, mx] + 0.08, na.rm = TRUE)
) / 20
),
0.8,
Expand Down
35 changes: 21 additions & 14 deletions R/data_type.R
Original file line number Diff line number Diff line change
Expand Up @@ -65,11 +65,13 @@ identify_data_type <- function(df,

df[, record_id := .I]
df[, type := NA_character_]

sa_name <- gDRutils::get_experiment_groups("single-agent")[["single-agent"]]

controls <- rowSums(df[, conc_ids, with = FALSE] == 0) == length(conc_ids)
single_agent <- rowSums(df[, conc_ids, with = FALSE] != 0) == 1
df$type <- ifelse(controls, "control",
ifelse(single_agent, "single-agent", NA))
ifelse(single_agent, sa_name, NA))


if (length(conc_ids) > 1) {
Expand All @@ -81,7 +83,9 @@ identify_data_type <- function(df,
)
conc_ratio <- conc_ratio[!names(conc_ratio) %in% c("Inf", "-Inf")]

type <- ifelse(length(conc_ratio) <= codilution_conc, "co-dilution", "matrix")
type <- ifelse(length(conc_ratio) <= codilution_conc,
gDRutils::get_experiment_groups("single-agent")[["co-dilution"]],
gDRutils::get_experiment_groups("combination"))
df$type[missing_type_rows] <- type
}
df
Expand Down Expand Up @@ -156,7 +160,10 @@ split_raw_data <- function(df,
"drug_moa", "drug_moa2", "drug_moa3", "concentration", "concentration2",
"concentration3"),
simplify = FALSE)
)
)

sa_name <- gDRutils::get_experiment_groups("single-agent")[["single-agent"]]

drug_ids <- drug_ids[which(drug_ids %in% names(df))]
codrug_ids <- drug_ids[grep("[0-9]", names(drug_ids))]
conc_idx <- drug_ids[grep("concentration", names(drug_ids))]
Expand All @@ -167,7 +174,7 @@ split_raw_data <- function(df,
types <- setdiff(names(df_list), "control")
control <- df_list[["control"]]
df_list[["control"]] <- NULL
cotrt_types <- setdiff(names(df_list), "single-agent")
cotrt_types <- setdiff(names(df_list), sa_name)

control_sa_idx <- which(
rowSums(df[, conc_idx, with = FALSE] == 0) == length(conc_idx)
Expand All @@ -193,8 +200,8 @@ split_raw_data <- function(df,
df_merged <- rbind(
df_list[[x]],
cotrt_matching[control, on = intersect(names(cotrt_matching), names(control))])
if (x == "matrix") {
matrix_data <- rbind(df_merged, df_list[["single-agent"]])
if (x == gDRutils::get_experiment_groups("combination")) {
matrix_data <- rbind(df_merged, df_list[[sa_name]])
for (j in conc_idx)
data.table::set(matrix_data, which(is.na(matrix_data[[j]])), j, 0)
for (j in codrug_drug_id) {
Expand All @@ -207,10 +214,10 @@ split_raw_data <- function(df,
})
}

if (any("single-agent" == names(df_list))) {
if (any(sa_name == names(df_list))) {
sa_idx <- gDRutils::loop(
grep(drug_ids[["concentration"]], drug_ids, value = TRUE),
function(x) which(!df_list[["single-agent"]][, x, with = FALSE] == 0)
function(x) which(!df_list[[sa_name]][, x, with = FALSE] == 0)
)
sa_idx[["concentration"]] <- NULL

Expand All @@ -221,15 +228,15 @@ split_raw_data <- function(df,
value = TRUE
)
selected_columns <- unname(drug_ids[c("drug_name", "drug", "drug_moa", "concentration")])
df_list[["single-agent"]][sa_idx[[codrug]], selected_columns] <-
df_list[["single-agent"]][sa_idx[[codrug]], codrug_cols, with = FALSE]
df_list[[sa_name]][sa_idx[[codrug]], selected_columns] <-
df_list[[sa_name]][sa_idx[[codrug]], codrug_cols, with = FALSE]
}
df_list[["single-agent"]][, codrug_ids] <- NULL
df_list[[sa_name]][, codrug_ids] <- NULL

selected_columns <- names(df_list[["single-agent"]])
selected_columns <- names(df_list[[sa_name]])

df_list[["single-agent"]] <- rbind(
df_list[["single-agent"]],
df_list[[sa_name]] <- rbind(
df_list[[sa_name]],
control_sa[, selected_columns, with = FALSE]
)
}
Expand Down
Loading
Loading