This notebook includes implementation of music generation with LSTM based RNN that covered in MIT 6.S191 Introduction to Deep Learning lab 2.
Dataset is compiled from Cobb's Music of Ireland.
Currently only LSTM based RNN model is exist.
absl-py==0.12.0
astunparse==1.6.3
cachetools==4.2.2
certifi==2020.12.5
chardet==4.0.0
flatbuffers==1.12
gast==0.3.3
google-auth==1.30.0
google-auth-oauthlib==0.4.4
google-pasta==0.2.0
grpcio==1.32.0
h5py==2.10.0
idna==2.10
Keras-Preprocessing==1.1.2
Markdown==3.3.4
numpy==1.19.5
oauthlib==3.1.0
opt-einsum==3.3.0
protobuf==3.17.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
requests==2.25.1
requests-oauthlib==1.3.0
rsa==4.7.2
six==1.15.0
tensorboard==2.5.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow==2.4.1
tensorflow-estimator==2.4.0
termcolor==1.1.0
tqdm==4.60.0
typing-extensions==3.7.4.3
urllib3==1.26.4
Werkzeug==2.0.0
wrapt==1.12.1
ps: All the libraries can be downloaded by pip install -r requirements.txt
- https://soundcloud.com/erdem-uysal-578262330/ir-sh-folk-by-lstm-based-rnn
- https://soundcloud.com/erdem-uysal-578262330/irish-folk-by-lstm-based-rnn-2
https://medium.com/analytics-vidhya/music-generation-with-lstm-based-rnn-3fa967bc1f37
R. Erdem Uysal