Skip to content

Latest commit

 

History

History
56 lines (55 loc) · 1.46 KB

README.md

File metadata and controls

56 lines (55 loc) · 1.46 KB

Composer AI - Music Generation with LSTM Based RNN

This notebook includes implementation of music generation with LSTM based RNN that covered in MIT 6.S191 Introduction to Deep Learning lab 2.

Data

Dataset is compiled from Cobb's Music of Ireland.

Models

Currently only LSTM based RNN model is exist.

Dependencies

absl-py==0.12.0
astunparse==1.6.3
cachetools==4.2.2
certifi==2020.12.5
chardet==4.0.0
flatbuffers==1.12
gast==0.3.3
google-auth==1.30.0
google-auth-oauthlib==0.4.4
google-pasta==0.2.0
grpcio==1.32.0
h5py==2.10.0
idna==2.10
Keras-Preprocessing==1.1.2
Markdown==3.3.4
numpy==1.19.5
oauthlib==3.1.0
opt-einsum==3.3.0
protobuf==3.17.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
requests==2.25.1
requests-oauthlib==1.3.0
rsa==4.7.2
six==1.15.0
tensorboard==2.5.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow==2.4.1
tensorflow-estimator==2.4.0
termcolor==1.1.0
tqdm==4.60.0
typing-extensions==3.7.4.3
urllib3==1.26.4
Werkzeug==2.0.0
wrapt==1.12.1
ps: All the libraries can be downloaded by pip install -r requirements.txt

Generated Samples

Blog Post

https://medium.com/analytics-vidhya/music-generation-with-lstm-based-rnn-3fa967bc1f37

Author

R. Erdem Uysal