-
Notifications
You must be signed in to change notification settings - Fork 139
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Replace test_data_quality_at_scale.ipynb #208
Closed
Closed
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,14 +6,115 @@ | |
"source": [ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Line #2. os.environ["SPARK_VERSION"] = '3.3' Maybe add ad comment that mention setting this to 3.5 if one use pydeequ 1.4.0 Reply via ReviewNB |
||
"# Analyzers Basic Tutorial\n", | ||
"\n", | ||
"__Updated June 2024 to use with a new dataset and pydeequ 1.2.0/SPARK 3.3__\n", | ||
"\n", | ||
"This Jupyter notebook will give a basic tutorial on how to use PyDeequ's Analyzers module." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"os.environ[\"SPARK_VERSION\"] = '3.3'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
":: loading settings :: url = jar:file:/home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages/pyspark/jars/ivy-2.5.0.jar!/org/apache/ivy/core/settings/ivysettings.xml\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Ivy Default Cache set to: /home/ec2-user/.ivy2/cache\n", | ||
"The jars for the packages stored in: /home/ec2-user/.ivy2/jars\n", | ||
"com.amazon.deequ#deequ added as a dependency\n", | ||
":: resolving dependencies :: org.apache.spark#spark-submit-parent-23421fea-77b3-4d69-9251-54adf6371fd9;1.0\n", | ||
"\tconfs: [default]\n", | ||
"\tfound com.amazon.deequ#deequ;2.0.3-spark-3.3 in central\n", | ||
"\tfound org.scala-lang#scala-reflect;2.12.10 in central\n", | ||
"\tfound org.scalanlp#breeze_2.12;0.13.2 in central\n", | ||
"\tfound org.scalanlp#breeze-macros_2.12;0.13.2 in central\n", | ||
"\tfound com.github.fommil.netlib#core;1.1.2 in central\n", | ||
"\tfound net.sf.opencsv#opencsv;2.3 in central\n", | ||
"\tfound com.github.rwl#jtransforms;2.4.0 in central\n", | ||
"\tfound junit#junit;4.8.2 in central\n", | ||
"\tfound org.apache.commons#commons-math3;3.2 in central\n", | ||
"\tfound org.spire-math#spire_2.12;0.13.0 in central\n", | ||
"\tfound org.spire-math#spire-macros_2.12;0.13.0 in central\n", | ||
"\tfound org.typelevel#machinist_2.12;0.6.1 in central\n", | ||
"\tfound com.chuusai#shapeless_2.12;2.3.2 in central\n", | ||
"\tfound org.typelevel#macro-compat_2.12;1.1.1 in central\n", | ||
"\tfound org.slf4j#slf4j-api;1.7.5 in central\n", | ||
":: resolution report :: resolve 435ms :: artifacts dl 12ms\n", | ||
"\t:: modules in use:\n", | ||
"\tcom.amazon.deequ#deequ;2.0.3-spark-3.3 from central in [default]\n", | ||
"\tcom.chuusai#shapeless_2.12;2.3.2 from central in [default]\n", | ||
"\tcom.github.fommil.netlib#core;1.1.2 from central in [default]\n", | ||
"\tcom.github.rwl#jtransforms;2.4.0 from central in [default]\n", | ||
"\tjunit#junit;4.8.2 from central in [default]\n", | ||
"\tnet.sf.opencsv#opencsv;2.3 from central in [default]\n", | ||
"\torg.apache.commons#commons-math3;3.2 from central in [default]\n", | ||
"\torg.scala-lang#scala-reflect;2.12.10 from central in [default]\n", | ||
"\torg.scalanlp#breeze-macros_2.12;0.13.2 from central in [default]\n", | ||
"\torg.scalanlp#breeze_2.12;0.13.2 from central in [default]\n", | ||
"\torg.slf4j#slf4j-api;1.7.5 from central in [default]\n", | ||
"\torg.spire-math#spire-macros_2.12;0.13.0 from central in [default]\n", | ||
"\torg.spire-math#spire_2.12;0.13.0 from central in [default]\n", | ||
"\torg.typelevel#machinist_2.12;0.6.1 from central in [default]\n", | ||
"\torg.typelevel#macro-compat_2.12;1.1.1 from central in [default]\n", | ||
"\t:: evicted modules:\n", | ||
"\torg.scala-lang#scala-reflect;2.12.1 by [org.scala-lang#scala-reflect;2.12.10] in [default]\n", | ||
"\torg.scala-lang#scala-reflect;2.12.0 by [org.scala-lang#scala-reflect;2.12.10] in [default]\n", | ||
"\t---------------------------------------------------------------------\n", | ||
"\t| | modules || artifacts |\n", | ||
"\t| conf | number| search|dwnlded|evicted|| number|dwnlded|\n", | ||
"\t---------------------------------------------------------------------\n", | ||
"\t| default | 17 | 0 | 0 | 2 || 15 | 0 |\n", | ||
"\t---------------------------------------------------------------------\n", | ||
":: retrieving :: org.apache.spark#spark-submit-parent-23421fea-77b3-4d69-9251-54adf6371fd9\n", | ||
"\tconfs: [default]\n", | ||
"\t0 artifacts copied, 15 already retrieved (0kB/9ms)\n" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"24/06/14 23:25:58 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Setting default log level to \"WARN\".\n", | ||
"To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"24/06/14 23:25:59 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from pyspark.sql import SparkSession, Row, DataFrame\n", | ||
"import json\n", | ||
|
@@ -36,14 +137,30 @@ | |
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### We will be using the Amazon Product Reviews dataset -- specifically the Electronics subset. " | ||
"### We will be using the synthetic reviews dataset for Electronics products" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"execution_count": 3, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"24/06/14 23:26:01 WARN MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-s3a-file-system.properties,hadoop-metrics2.properties\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
" \r" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
|
@@ -53,32 +170,46 @@ | |
" |-- customer_id: string (nullable = true)\n", | ||
" |-- review_id: string (nullable = true)\n", | ||
" |-- product_id: string (nullable = true)\n", | ||
" |-- product_parent: string (nullable = true)\n", | ||
" |-- product_title: string (nullable = true)\n", | ||
" |-- star_rating: integer (nullable = true)\n", | ||
" |-- helpful_votes: integer (nullable = true)\n", | ||
" |-- total_votes: integer (nullable = true)\n", | ||
" |-- vine: string (nullable = true)\n", | ||
" |-- verified_purchase: string (nullable = true)\n", | ||
" |-- star_rating: long (nullable = true)\n", | ||
" |-- helpful_votes: long (nullable = true)\n", | ||
" |-- total_votes: long (nullable = true)\n", | ||
" |-- insight: string (nullable = true)\n", | ||
" |-- review_headline: string (nullable = true)\n", | ||
" |-- review_body: string (nullable = true)\n", | ||
" |-- review_date: date (nullable = true)\n", | ||
" |-- year: integer (nullable = true)\n", | ||
" |-- review_date: timestamp (nullable = true)\n", | ||
" |-- review_year: long (nullable = true)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"df = spark.read.parquet(\"s3a://amazon-reviews-pds/parquet/product_category=Electronics/\")\n", | ||
"df = spark.read.parquet(\"s3a://aws-bigdata-blog/generated_synthetic_reviews/data/product_category=Electronics/\")\n", | ||
"\n", | ||
"df.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"execution_count": 4, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"24/06/14 23:26:06 WARN package: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.sql.debug.maxToStringFields'.\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
" \r" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
|
@@ -87,15 +218,23 @@ | |
"| entity| instance| name| value|\n", | ||
"+-----------+--------------------+-------------------+--------------------+\n", | ||
"| Column| review_id| Completeness| 1.0|\n", | ||
"| Column| review_id|ApproxCountDistinct| 3010972.0|\n", | ||
"|Mutlicolumn|total_votes,star_...| Correlation|-0.03451097996538765|\n", | ||
"| Dataset| *| Size| 3120938.0|\n", | ||
"| Column| star_rating| Mean| 4.036143941340712|\n", | ||
"| Column| top star_rating| Compliance| 0.7494070692849394|\n", | ||
"|Mutlicolumn|total_votes,helpf...| Correlation| 0.9936463809903863|\n", | ||
"| Column| review_id|ApproxCountDistinct| 3160409.0|\n", | ||
"|Mutlicolumn|total_votes,star_...| Correlation|-7.38808965018615...|\n", | ||
"| Dataset| *| Size| 3010972.0|\n", | ||
"| Column| star_rating| Mean| 3.9999973430506826|\n", | ||
"| Column| top star_rating| Compliance| 0.7499993357626706|\n", | ||
"|Mutlicolumn|total_votes,helpf...| Correlation| 0.9817922803462663|\n", | ||
"+-----------+--------------------+-------------------+--------------------+\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages/pyspark/sql/dataframe.py:127: UserWarning: DataFrame constructor is internal. Do not directly use it.\n", | ||
" warnings.warn(\"DataFrame constructor is internal. Do not directly use it.\")\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
|
@@ -119,7 +258,9 @@ | |
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
|
@@ -161,42 +302,42 @@ | |
" <td>Column</td>\n", | ||
" <td>review_id</td>\n", | ||
" <td>ApproxCountDistinct</td>\n", | ||
" <td>3.010972e+06</td>\n", | ||
" <td>3.160409e+06</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>Mutlicolumn</td>\n", | ||
" <td>total_votes,star_rating</td>\n", | ||
" <td>Correlation</td>\n", | ||
" <td>-3.451098e-02</td>\n", | ||
" <td>-7.388090e-04</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3</th>\n", | ||
" <td>Dataset</td>\n", | ||
" <td>*</td>\n", | ||
" <td>Size</td>\n", | ||
" <td>3.120938e+06</td>\n", | ||
" <td>3.010972e+06</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>4</th>\n", | ||
" <td>Column</td>\n", | ||
" <td>star_rating</td>\n", | ||
" <td>Mean</td>\n", | ||
" <td>4.036144e+00</td>\n", | ||
" <td>3.999997e+00</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>5</th>\n", | ||
" <td>Column</td>\n", | ||
" <td>top star_rating</td>\n", | ||
" <td>Compliance</td>\n", | ||
" <td>7.494071e-01</td>\n", | ||
" <td>7.499993e-01</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>6</th>\n", | ||
" <td>Mutlicolumn</td>\n", | ||
" <td>total_votes,helpful_votes</td>\n", | ||
" <td>Correlation</td>\n", | ||
" <td>9.936464e-01</td>\n", | ||
" <td>9.817923e-01</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
|
@@ -205,12 +346,12 @@ | |
"text/plain": [ | ||
" entity instance name value\n", | ||
"0 Column review_id Completeness 1.000000e+00\n", | ||
"1 Column review_id ApproxCountDistinct 3.010972e+06\n", | ||
"2 Mutlicolumn total_votes,star_rating Correlation -3.451098e-02\n", | ||
"3 Dataset * Size 3.120938e+06\n", | ||
"4 Column star_rating Mean 4.036144e+00\n", | ||
"5 Column top star_rating Compliance 7.494071e-01\n", | ||
"6 Mutlicolumn total_votes,helpful_votes Correlation 9.936464e-01" | ||
"1 Column review_id ApproxCountDistinct 3.160409e+06\n", | ||
"2 Mutlicolumn total_votes,star_rating Correlation -7.388090e-04\n", | ||
"3 Dataset * Size 3.010972e+06\n", | ||
"4 Column star_rating Mean 3.999997e+00\n", | ||
"5 Column top star_rating Compliance 7.499993e-01\n", | ||
"6 Mutlicolumn total_votes,helpful_votes Correlation 9.817923e-01" | ||
] | ||
}, | ||
"execution_count": 5, | ||
|
@@ -247,7 +388,7 @@ | |
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.10" | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't see a reason the same code won't work with pydeequ 1.4.0/Spark 3.5. I think it might be fine to insert something like "Tested on pydeequ 1.2.0/Spark 3.3. Code should run on all supported pydeequ versions".
Reply via ReviewNB