Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(pose2twist): compute angular velocity through quaternion #7322

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions localization/pose2twist/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,13 @@ rclcpp_components_register_node(${PROJECT_NAME}
EXECUTOR SingleThreadedExecutor
)

if(BUILD_TESTING)
find_package(ament_cmake_gtest REQUIRED)
ament_auto_add_gtest(test_angular_velocity
test/test_angular_velocity.cpp
)
endif()

ament_auto_package(
INSTALL_TO_SHARE
launch
Expand Down
2 changes: 1 addition & 1 deletion localization/pose2twist/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
This `pose2twist` calculates the velocity from the input pose history. In addition to the computed twist, this node outputs the linear-x and angular-z components as a float message to simplify debugging.

The `twist.linear.x` is calculated as `sqrt(dx * dx + dy * dy + dz * dz) / dt`, and the values in the `y` and `z` fields are zero.
The `twist.angular` is calculated as `d_roll / dt`, `d_pitch / dt` and `d_yaw / dt` for each field.
The `twist.angular` is calculated as `relative_rotation_vector / dt` for each field.

## Inputs / Outputs

Expand Down
10 changes: 10 additions & 0 deletions localization/pose2twist/include/pose2twist/pose2twist_core.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,16 @@
#include <geometry_msgs/msg/twist_stamped.hpp>
#include <tier4_debug_msgs/msg/float32_stamped.hpp>

#ifdef ROS_DISTRO_GALACTIC
#include <tf2_geometry_msgs/tf2_geometry_msgs.h>
#else
#include <tf2_geometry_msgs/tf2_geometry_msgs.hpp>
#endif

// Compute the relative rotation of q2 from q1 as a rotation vector
geometry_msgs::msg::Vector3 compute_relative_rotation_vector(
const tf2::Quaternion & q1, const tf2::Quaternion & q2);

class Pose2Twist : public rclcpp::Node
{
public:
Expand Down
52 changes: 18 additions & 34 deletions localization/pose2twist/src/pose2twist_core.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,6 @@

#include "pose2twist/pose2twist_core.hpp"

#ifdef ROS_DISTRO_GALACTIC
#include <tf2_geometry_msgs/tf2_geometry_msgs.h>
#else
#include <tf2_geometry_msgs/tf2_geometry_msgs.hpp>
#endif

#include <cmath>
#include <cstddef>
#include <functional>
Expand All @@ -41,29 +35,21 @@ Pose2Twist::Pose2Twist(const rclcpp::NodeOptions & options) : rclcpp::Node("pose
"pose", queue_size, std::bind(&Pose2Twist::callback_pose, this, _1));
}

double calc_diff_for_radian(const double lhs_rad, const double rhs_rad)
{
double diff_rad = lhs_rad - rhs_rad;
if (diff_rad > M_PI) {
diff_rad = diff_rad - 2 * M_PI;
} else if (diff_rad < -M_PI) {
diff_rad = diff_rad + 2 * M_PI;
}
return diff_rad;
}

// x: roll, y: pitch, z: yaw
geometry_msgs::msg::Vector3 get_rpy(const geometry_msgs::msg::Pose & pose)
tf2::Quaternion get_quaternion(const geometry_msgs::msg::PoseStamped::SharedPtr & pose_stamped_ptr)
{
geometry_msgs::msg::Vector3 rpy;
tf2::Quaternion q(pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w);
tf2::Matrix3x3(q).getRPY(rpy.x, rpy.y, rpy.z);
return rpy;
const auto & orientation = pose_stamped_ptr->pose.orientation;
return tf2::Quaternion{orientation.x, orientation.y, orientation.z, orientation.w};
}

geometry_msgs::msg::Vector3 get_rpy(geometry_msgs::msg::PoseStamped::SharedPtr pose)
geometry_msgs::msg::Vector3 compute_relative_rotation_vector(
const tf2::Quaternion & q1, const tf2::Quaternion & q2)
{
return get_rpy(pose->pose);
// If we define q2 as the rotation obtained by applying dq after applying q1,
// then q2 = q1 * dq .
// Therefore, dq = q1.inverse() * q2 .
const tf2::Quaternion diff_quaternion = q1.inverse() * q2;
const tf2::Vector3 axis = diff_quaternion.getAxis() * diff_quaternion.getAngle();
return geometry_msgs::msg::Vector3{}.set__x(axis.x()).set__y(axis.y()).set__z(axis.z());
}

geometry_msgs::msg::TwistStamped calc_twist(
Expand All @@ -79,18 +65,16 @@ geometry_msgs::msg::TwistStamped calc_twist(
return twist;
}

const auto pose_a_rpy = get_rpy(pose_a);
const auto pose_b_rpy = get_rpy(pose_b);
const auto pose_a_quaternion = get_quaternion(pose_a);
const auto pose_b_quaternion = get_quaternion(pose_b);

geometry_msgs::msg::Vector3 diff_xyz;
geometry_msgs::msg::Vector3 diff_rpy;
const geometry_msgs::msg::Vector3 relative_rotation_vector =
compute_relative_rotation_vector(pose_a_quaternion, pose_b_quaternion);

diff_xyz.x = pose_b->pose.position.x - pose_a->pose.position.x;
diff_xyz.y = pose_b->pose.position.y - pose_a->pose.position.y;
diff_xyz.z = pose_b->pose.position.z - pose_a->pose.position.z;
diff_rpy.x = calc_diff_for_radian(pose_b_rpy.x, pose_a_rpy.x);
diff_rpy.y = calc_diff_for_radian(pose_b_rpy.y, pose_a_rpy.y);
diff_rpy.z = calc_diff_for_radian(pose_b_rpy.z, pose_a_rpy.z);

geometry_msgs::msg::TwistStamped twist;
twist.header = pose_b->header;
Expand All @@ -99,9 +83,9 @@ geometry_msgs::msg::TwistStamped calc_twist(
dt;
twist.twist.linear.y = 0;
twist.twist.linear.z = 0;
twist.twist.angular.x = diff_rpy.x / dt;
twist.twist.angular.y = diff_rpy.y / dt;
twist.twist.angular.z = diff_rpy.z / dt;
twist.twist.angular.x = relative_rotation_vector.x / dt;
twist.twist.angular.y = relative_rotation_vector.y / dt;
twist.twist.angular.z = relative_rotation_vector.z / dt;

return twist;
}
Expand Down
115 changes: 115 additions & 0 deletions localization/pose2twist/test/test_angular_velocity.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
// Copyright 2022 The Autoware Contributors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "pose2twist/pose2twist_core.hpp"

#include <gtest/gtest.h>

// 1e-3 radian = 0.057 degrees
constexpr double acceptable_error = 1e-3;

TEST(AngularVelocityFromQuaternion, CheckMultiplicationOrder)
{
// If we define q2 as the rotation obtained by applying dq after applying q1, then q2 = q1 * dq .
//
// IT IS NOT q2 = dq * q1 .
//
// This test checks that the multiplication order is correct.

const tf2::Vector3 target_vector(1, 2, 3);
// initial state
// Now, car is facing to the +x direction
// z
// ^ y
// | ^
// | /
// | /
// car -> x
//
//
//

tf2::Quaternion q1;
q1.setRPY(0., 0., M_PI / 2.); // yaw = 90 degrees
const tf2::Vector3 initially_rotated_vector = tf2::quatRotate(q1, target_vector);
// after applying q1
// Now, car is facing to the +y direction
// z
// ^
// | y
// | ^
// | /
// <--car x
//
//
//
EXPECT_NEAR(initially_rotated_vector.x(), -2., acceptable_error);
EXPECT_NEAR(initially_rotated_vector.y(), 1., acceptable_error);
EXPECT_NEAR(initially_rotated_vector.z(), 3., acceptable_error);

tf2::Quaternion dq;
dq.setRPY(0., M_PI / 2., 0.); // pitch = 90 degrees
const tf2::Vector3 finally_rotated_vector = tf2::quatRotate(q1 * dq, target_vector);
// after applying dq
// Now, car is facing to the -z direction
// z y
// ^
// /
// /
// /
// <--car x
// |
// v
//
EXPECT_NEAR(finally_rotated_vector.x(), -2., acceptable_error);
EXPECT_NEAR(finally_rotated_vector.y(), 3., acceptable_error);
EXPECT_NEAR(finally_rotated_vector.z(), -1., acceptable_error);

// Failure case
{
const tf2::Vector3 false_rotated_vector = tf2::quatRotate(dq * q1, target_vector);

EXPECT_FALSE(std::abs(false_rotated_vector.x() - (-2)) < acceptable_error);
EXPECT_FALSE(std::abs(false_rotated_vector.y() - (3)) < acceptable_error);
EXPECT_FALSE(std::abs(false_rotated_vector.z() - (-1)) < acceptable_error);
}
}

TEST(AngularVelocityFromQuaternion, CheckNumericalValidity)
{
auto test = [](const tf2::Vector3 & expected_axis, const double expected_angle) -> void {
tf2::Quaternion expected_q;
expected_q.setRotation(expected_axis, expected_angle);

// Create a random initial quaternion
tf2::Quaternion initial_q;
initial_q.setRPY(0.2, 0.3, 0.4);

// Calculate the final quaternion by rotating the initial quaternion by the expected
// quaternion
const tf2::Quaternion final_q = initial_q * expected_q;

// Calculate the relative rotation between the initial and final quaternion
const geometry_msgs::msg::Vector3 rotation_vector =
compute_relative_rotation_vector(initial_q, final_q);

EXPECT_NEAR(rotation_vector.x, expected_axis.x() * expected_angle, acceptable_error);
EXPECT_NEAR(rotation_vector.y, expected_axis.y() * expected_angle, acceptable_error);
EXPECT_NEAR(rotation_vector.z, expected_axis.z() * expected_angle, acceptable_error);
};

test(tf2::Vector3(1.0, 0.0, 0.0).normalized(), 0.1); // 0.1 radian = 5.7 degrees
test(tf2::Vector3(1.0, 1.0, 0.0).normalized(), -0.2); // 0.2 radian = 11.4 degrees
test(tf2::Vector3(1.0, 2.0, 3.0).normalized(), 0.3); // 0.3 radian = 17.2 degrees
}
Loading