-
Notifications
You must be signed in to change notification settings - Fork 673
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(kalman_filter): add gtest (#4799)
* feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * feat(kalman_filter): add gtest Signed-off-by: Cynthia Liu <[email protected]> * style(pre-commit): autofix --------- Signed-off-by: Cynthia Liu <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
9fe7626
commit dc8cc07
Showing
4 changed files
with
224 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
// Copyright 2023 The Autoware Foundation | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "kalman_filter/kalman_filter.hpp" | ||
|
||
#include <gtest/gtest.h> | ||
|
||
TEST(kalman_filter, kf) | ||
{ | ||
KalmanFilter kf_; | ||
|
||
Eigen::MatrixXd x_t(2, 1); | ||
x_t << 1, 2; | ||
|
||
Eigen::MatrixXd P_t(2, 2); | ||
P_t << 1, 0, 0, 1; | ||
|
||
Eigen::MatrixXd Q_t(2, 2); | ||
Q_t << 0.01, 0, 0, 0.01; | ||
|
||
Eigen::MatrixXd R_t(2, 2); | ||
R_t << 0.09, 0, 0, 0.09; | ||
|
||
Eigen::MatrixXd C_t(2, 2); | ||
C_t << 1, 0, 0, 1; | ||
|
||
Eigen::MatrixXd A_t(2, 2); | ||
A_t << 1, 0, 0, 1; | ||
|
||
Eigen::MatrixXd B_t(2, 2); | ||
B_t << 1, 0, 0, 1; | ||
|
||
// Initialize the filter and check if initialization was successful | ||
EXPECT_TRUE(kf_.init(x_t, A_t, B_t, C_t, Q_t, R_t, P_t)); | ||
|
||
// Perform prediction | ||
Eigen::MatrixXd u_t(2, 1); | ||
u_t << 0.1, 0.1; | ||
EXPECT_TRUE(kf_.predict(u_t)); | ||
|
||
// Check the updated state and covariance matrix | ||
Eigen::MatrixXd x_predict_expected = A_t * x_t + B_t * u_t; | ||
Eigen::MatrixXd P_predict_expected = A_t * P_t * A_t.transpose() + Q_t; | ||
|
||
Eigen::MatrixXd x_predict; | ||
kf_.getX(x_predict); | ||
Eigen::MatrixXd P_predict; | ||
kf_.getP(P_predict); | ||
|
||
EXPECT_NEAR(x_predict(0, 0), x_predict_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(x_predict(1, 0), x_predict_expected(1, 0), 1e-5); | ||
EXPECT_NEAR(P_predict(0, 0), P_predict_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(P_predict(1, 1), P_predict_expected(1, 1), 1e-5); | ||
|
||
// Perform update | ||
Eigen::MatrixXd y_t(2, 1); | ||
y_t << 1.05, 2.05; | ||
EXPECT_TRUE(kf_.update(y_t)); | ||
|
||
// Check the updated state and covariance matrix | ||
const Eigen::MatrixXd PCT_t = P_predict_expected * C_t.transpose(); | ||
const Eigen::MatrixXd K_t = PCT_t * ((R_t + C_t * PCT_t).inverse()); | ||
const Eigen::MatrixXd y_pred = C_t * x_predict_expected; | ||
Eigen::MatrixXd x_update_expected = x_predict_expected + K_t * (y_t - y_pred); | ||
Eigen::MatrixXd P_update_expected = P_predict_expected - K_t * (C_t * P_predict_expected); | ||
|
||
Eigen::MatrixXd x_update; | ||
kf_.getX(x_update); | ||
Eigen::MatrixXd P_update; | ||
kf_.getP(P_update); | ||
|
||
EXPECT_NEAR(x_update(0, 0), x_update_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(x_update(1, 0), x_update_expected(1, 0), 1e-5); | ||
EXPECT_NEAR(P_update(0, 0), P_update_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(P_update(1, 1), P_update_expected(1, 1), 1e-5); | ||
} | ||
|
||
int main(int argc, char * argv[]) | ||
{ | ||
testing::InitGoogleTest(&argc, argv); | ||
bool result = RUN_ALL_TESTS(); | ||
return result; | ||
} |
121 changes: 121 additions & 0 deletions
121
common/kalman_filter/test/test_time_delay_kalman_filter.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
// Copyright 2023 The Autoware Foundation | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "kalman_filter/time_delay_kalman_filter.hpp" | ||
|
||
#include <gtest/gtest.h> | ||
|
||
TEST(time_delay_kalman_filter, td_kf) | ||
{ | ||
TimeDelayKalmanFilter td_kf_; | ||
|
||
Eigen::MatrixXd x_t(3, 1); | ||
x_t << 1.0, 2.0, 3.0; | ||
Eigen::MatrixXd P_t(3, 3); | ||
P_t << 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.3; | ||
const int max_delay_step = 5; | ||
const int dim_x = x_t.rows(); | ||
const int dim_x_ex = dim_x * max_delay_step; | ||
// Initialize the filter | ||
td_kf_.init(x_t, P_t, max_delay_step); | ||
|
||
// Check if initialization was successful | ||
Eigen::MatrixXd x_init = td_kf_.getLatestX(); | ||
Eigen::MatrixXd P_init = td_kf_.getLatestP(); | ||
Eigen::MatrixXd x_ex_t = Eigen::MatrixXd::Zero(dim_x_ex, 1); | ||
Eigen::MatrixXd P_ex_t = Eigen::MatrixXd::Zero(dim_x_ex, dim_x_ex); | ||
for (int i = 0; i < max_delay_step; ++i) { | ||
x_ex_t.block(i * dim_x, 0, dim_x, 1) = x_t; | ||
P_ex_t.block(i * dim_x, i * dim_x, dim_x, dim_x) = P_t; | ||
} | ||
|
||
EXPECT_EQ(x_init.rows(), 3); | ||
EXPECT_EQ(x_init.cols(), 1); | ||
EXPECT_EQ(P_init.rows(), 3); | ||
EXPECT_EQ(P_init.cols(), 3); | ||
EXPECT_NEAR(x_init(0, 0), x_t(0, 0), 1e-5); | ||
EXPECT_NEAR(x_init(1, 0), x_t(1, 0), 1e-5); | ||
EXPECT_NEAR(x_init(2, 0), x_t(2, 0), 1e-5); | ||
EXPECT_NEAR(P_init(0, 0), P_t(0, 0), 1e-5); | ||
EXPECT_NEAR(P_init(1, 1), P_t(1, 1), 1e-5); | ||
EXPECT_NEAR(P_init(2, 2), P_t(2, 2), 1e-5); | ||
|
||
// Define prediction parameters | ||
Eigen::MatrixXd A_t(3, 3); | ||
A_t << 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0; | ||
Eigen::MatrixXd Q_t(3, 3); | ||
Q_t << 0.01, 0.0, 0.0, 0.0, 0.02, 0.0, 0.0, 0.0, 0.03; | ||
Eigen::MatrixXd x_next(3, 1); | ||
x_next << 2.0, 4.0, 6.0; | ||
|
||
// Perform prediction | ||
EXPECT_TRUE(td_kf_.predictWithDelay(x_next, A_t, Q_t)); | ||
|
||
// Check the prediction state and covariance matrix | ||
Eigen::MatrixXd x_predict = td_kf_.getLatestX(); | ||
Eigen::MatrixXd P_predict = td_kf_.getLatestP(); | ||
Eigen::MatrixXd x_tmp = Eigen::MatrixXd::Zero(dim_x_ex, 1); | ||
x_tmp.block(0, 0, dim_x, 1) = A_t * x_t; | ||
x_tmp.block(dim_x, 0, dim_x_ex - dim_x, 1) = x_ex_t.block(0, 0, dim_x_ex - dim_x, 1); | ||
x_ex_t = x_tmp; | ||
Eigen::MatrixXd x_predict_expected = x_ex_t.block(0, 0, dim_x, 1); | ||
Eigen::MatrixXd P_tmp = Eigen::MatrixXd::Zero(dim_x_ex, dim_x_ex); | ||
P_tmp.block(0, 0, dim_x, dim_x) = A_t * P_ex_t.block(0, 0, dim_x, dim_x) * A_t.transpose() + Q_t; | ||
P_tmp.block(0, dim_x, dim_x, dim_x_ex - dim_x) = | ||
A_t * P_ex_t.block(0, 0, dim_x, dim_x_ex - dim_x); | ||
P_tmp.block(dim_x, 0, dim_x_ex - dim_x, dim_x) = | ||
P_ex_t.block(0, 0, dim_x_ex - dim_x, dim_x) * A_t.transpose(); | ||
P_tmp.block(dim_x, dim_x, dim_x_ex - dim_x, dim_x_ex - dim_x) = | ||
P_ex_t.block(0, 0, dim_x_ex - dim_x, dim_x_ex - dim_x); | ||
P_ex_t = P_tmp; | ||
Eigen::MatrixXd P_predict_expected = P_ex_t.block(0, 0, dim_x, dim_x); | ||
EXPECT_NEAR(x_predict(0, 0), x_predict_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(x_predict(1, 0), x_predict_expected(1, 0), 1e-5); | ||
EXPECT_NEAR(x_predict(2, 0), x_predict_expected(2, 0), 1e-5); | ||
EXPECT_NEAR(P_predict(0, 0), P_predict_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(P_predict(1, 1), P_predict_expected(1, 1), 1e-5); | ||
EXPECT_NEAR(P_predict(2, 2), P_predict_expected(2, 2), 1e-5); | ||
|
||
// Define update parameters | ||
Eigen::MatrixXd C_t(3, 3); | ||
C_t << 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5; | ||
Eigen::MatrixXd R_t(3, 3); | ||
R_t << 0.001, 0.0, 0.0, 0.0, 0.002, 0.0, 0.0, 0.0, 0.003; | ||
Eigen::MatrixXd y_t(3, 1); | ||
y_t << 1.05, 2.05, 3.05; | ||
const int delay_step = 2; // Choose an appropriate delay step | ||
const int dim_y = y_t.rows(); | ||
|
||
// Perform update | ||
EXPECT_TRUE(td_kf_.updateWithDelay(y_t, C_t, R_t, delay_step)); | ||
|
||
// Check the updated state and covariance matrix | ||
Eigen::MatrixXd x_update = td_kf_.getLatestX(); | ||
Eigen::MatrixXd P_update = td_kf_.getLatestP(); | ||
|
||
Eigen::MatrixXd C_ex_t = Eigen::MatrixXd::Zero(dim_y, dim_x_ex); | ||
const Eigen::MatrixXd PCT_t = P_ex_t * C_ex_t.transpose(); | ||
const Eigen::MatrixXd K_t = PCT_t * ((R_t + C_ex_t * PCT_t).inverse()); | ||
const Eigen::MatrixXd y_pred = C_ex_t * x_ex_t; | ||
x_ex_t = x_ex_t + K_t * (y_t - y_pred); | ||
P_ex_t = P_ex_t - K_t * (C_ex_t * P_ex_t); | ||
Eigen::MatrixXd x_update_expected = x_ex_t.block(0, 0, dim_x, 1); | ||
Eigen::MatrixXd P_update_expected = P_ex_t.block(0, 0, dim_x, dim_x); | ||
EXPECT_NEAR(x_update(0, 0), x_update_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(x_update(1, 0), x_update_expected(1, 0), 1e-5); | ||
EXPECT_NEAR(x_update(2, 0), x_update_expected(2, 0), 1e-5); | ||
EXPECT_NEAR(P_update(0, 0), P_update_expected(0, 0), 1e-5); | ||
EXPECT_NEAR(P_update(1, 1), P_update_expected(1, 1), 1e-5); | ||
EXPECT_NEAR(P_update(2, 2), P_update_expected(2, 2), 1e-5); | ||
} |