Skip to content

Commit

Permalink
style(pre-commit): autofix
Browse files Browse the repository at this point in the history
  • Loading branch information
pre-commit-ci[bot] committed Apr 13, 2024
1 parent b9c3db2 commit 6987275
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions control/smart_mpc_trajectory_follower/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ In `run_sim.py`, the following parameters can be set:
| Parameter | Type | Description |
| ------------------------- | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| USE_TRAINED_MODEL_DIFF | bool | Whether the derivative of the trained model is reflected in the control |
| DATA_COLLECTION_MODE | str | Which method will be used to collect the training data <br> "ff": Straight line driving with feed-forward input <br> "pp": Figure eight driving with pure pursuit control <br> "mpc": Slalom driving with mpc |
| DATA_COLLECTION_MODE | str | Which method will be used to collect the training data <br> "ff": Straight line driving with feed-forward input <br> "pp": Figure eight driving with pure pursuit control <br> "mpc": Slalom driving with mpc |
| USE_POLYNOMIAL_REGRESSION | bool | Whether to perform polynomial regression before NN |
| USE_SELECTED_POLYNOMIAL | bool | When USE_POLYNOMIAL_REGRESSION is True, perform polynomial regression using only some preselected polynomials. <br> The choice of polynomials is intended to be able to absorb the contribution of some parameter shifts based on the nominal model of the vehicle. |
| FORCE_NN_MODEL_TO_ZERO | bool | Whether to force the NN model to zero (i.e., erase the contribution of the NN model). <br> When USE_POLYNOMIAL_REGRESSION is True, setting FORCE_MODEL_TO_ZERO to True allows the control to reflect the results of polynomial regression only, without using NN models. |
Expand Down Expand Up @@ -295,18 +295,18 @@ ros2 topic pub /pympc_reload_mpc_param_trigger std_msgs/msg/String "data: ''" --

The main parameters among the control parameters are as follows.

### `mpc_param.yaml`:
### `mpc_param.yaml`

| Parameter | Type | Description |
| ------------------------------------ | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| mpc_parameter:system:mode | str | control mode <br>"ilqr": iLQR mode <br> "mppi": MPPI mode <br> "mppi_ilqr": the initial value of iLQR is given by the MPPI solution. |
| mpc_parameter:system:mode | str | control mode <br>"ilqr": iLQR mode <br> "mppi": MPPI mode <br> "mppi_ilqr": the initial value of iLQR is given by the MPPI solution. |
| mpc_parameter:cost_parameters:Q | list[float] | Stage cost for states. <br> List of length 8, in order: straight deviation, lateral deviation, velocity deviation, yaw angle deviation, acceleration deviation, steer deviation, acceleration input deviation, steer input deviation cost weights. |
| mpc_parameter:cost_parameters:Q_c | list[float] | Cost in the horizon corresponding to the following timing_Q_c for the states. <br> The correspondence of the components of the list is the same as for Q. |
| mpc_parameter:cost_parameters:Q_f | list[float] | Termination cost for the states. <br> The correspondence of the components of the list is the same as for Q. |
| mpc_parameter:cost_parameters:R | list[float] | A list of length 2 where R[0] is weight of cost for the change rate of acceleration input value and R[1] is weight of cost for the change rate of steer input value. |
| mpc_parameter:mpc_setting:timing_Q_c | list[int] | Horizon numbers such that the stage cost for the states is set to Q_c. |

### `trained_model_param.yaml`:
### `trained_model_param.yaml`

| Parameter | Type | Description |
| ------------------------------------------------------------------ | ---- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
Expand Down

0 comments on commit 6987275

Please sign in to comment.