A simple Pytorch implementation of the paper "Adverserial Latent AutoEncoder".
The paper: https://arxiv.org/abs/2004.04467
Official implementation https://github.com/podgorskiy/ALAE
The first experiment on the paper was training an MLP version of ALAE on Mnist The training result of 100 epochs: (First row: Real images; second row: reconstructed images; third row randomly generated digits)
reprodue:
python3 train_MlpALAE.py
This experiment serves as a baseline to styleAlae Style gan on LFW (64x64 resize) with no tricks (truncation, style-mixing):
reprodue:
python3 train_StyleGan.py --dataset_name LFW
Results of Style ALAE on FFHQ (64x64 resize): (First row: Real images; second row: reconstructed images; third row randomly generated digits)
reprodue:
python3 train_StyleALAE.py --dataset_name FFHQ
- imageiofile
- kaggle
- numpy
- opencv-python
- torch
- torchvision
- tqdm
- PGGANs: https://arxiv.org/pdf/1710.10196.pdf
- StyleGAN: https://arxiv.org/abs/1812.04948
I Consulted and used parts of the codes in