-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_MlpALAE.py
59 lines (48 loc) · 2.25 KB
/
train_MlpALAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import torch
from datasets import get_dataset, get_dataloader
from dnn.models.ALAE import MLP_ALAE
from utils.common_utils import get_config_str
import argparse
from pprint import pprint
from utils.latent_interpolation import plot_latent_interpolation
parser = argparse.ArgumentParser(description='Train arguments')
parser.add_argument("--output_root", type=str, default="Training_dir-test")
parser.add_argument("--num_debug_images", type=int, default=24)
parser.add_argument("--print_model", action='store_true', default=False)
parser.add_argument("--print_config", action='store_true', default=False)
parser.add_argument("--device", type=str, default="cuda:0", help="cuda:0/cpu")
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == "cuda:0" else "cpu")
config = {'z_dim':50,
'w_dim':50,
'mapping_layers': 6,
'image_dim':28,
'lr': 0.002,
"batch_size": 128,
'epochs':100}
if __name__ == '__main__':
config_descriptor = get_config_str(config)
output_dir = os.path.join(args.output_root, f"MlpALAE_d-Mnist_{config_descriptor}")
os.makedirs(os.path.join(output_dir, 'images'), exist_ok=True)
# create_dataset
train_dataset, test_dataset = get_dataset("data", "Mnist", dim=config['image_dim'])
if args.print_config:
print("Model config:")
pprint(config)
# Create model
model = MLP_ALAE(model_config=config, device=device)
if args.print_model:
print(model)
test_dataloader = get_dataloader(test_dataset, batch_size=args.num_debug_images, resize=None, device=device)
test_samples_z = torch.randn(args.num_debug_images, config['z_dim'], dtype=torch.float32).to(device)
test_samples = next(iter(test_dataloader))
ckp_path = os.path.join(output_dir, "last_ckp.pth")
if os.path.exists(ckp_path):
print("Playing with trained model")
model.load_train_state(ckp_path)
N = min(8, args.num_debug_images // 2)
plot_latent_interpolation(model, test_samples[:N], test_samples[N: 2*N], steps=5, plot_path=os.path.join(output_dir, "linear_inerpolation.png"))
else:
print("Training model")
model.train(train_dataset, (test_samples_z, test_samples), output_dir)