-
Notifications
You must be signed in to change notification settings - Fork 15
Augmentation effect
Viet edited this page Jun 12, 2019
·
2 revisions
- General parameter:
Parameter | Metrics |
---|---|
batch_size: 32 | f1-score: - |
hist_equalization: True | mse: - |
image_resolution:(512, 512) | optimal mse threshold: - |
num_epochs: 1000 | roc-auc: 0.4541 |
- General parameter:
Parameter | Metrics |
---|---|
batch_size: 32 | f1-score: - |
hist_equalization: True | mse: - |
image_resolution:(512, 512) | optimal mse threshold: - |
num_epochs: 1000 | roc-auc: 0.4541 |
- General parameter:
Parameter | Metrics |
---|---|
batch_size: 32 | f1-score: 0.737247353224254 |
hist_equalization: True | mse: 0.0024145432 |
image_resolution:(512, 512) | optimal mse threshold: 0.00030937084 |
num_epochs: 1000 | roc-auc: 0.4567827733624078 |
- Augmentation parameter:
Chance | Parameter | Augmentation |
---|---|---|
1 | iaa.Fliplr(0.5) | Flip horizontally with 50% |
1 | iaa.Flipud(0.1) | Flip vertically with 10% |
0.5 | iaa.Affine(rotate=(-15, 15)) | Rotate from -15° to 15° |
0.5 | iaa.Multiply((0.8, 1.2)) | Multiply Values from 0.8 to 1.2 → augment brighness |
0.5 | iaa.Affine(scale=(0.8, 1.2))) | Zoom in and out from 0.8 to 1.2 |
-
Last image:
-
Loss
- Does not overfit.
- Some peaks in the training loss
- Validation loss is twice as high as training loss → train longer
-
False positive: highest MSE
- Have a lot of noisy space around the hand
- Not common angles
- Black image
-
False negative: lowest MSE
- Common angles
- Space around the hand is not to noisy
- True negative: lowest MSE
-
True positive: highest MSE
- Images with a lot of noise
- Uncommon angles
- General parameter:
Parameter | Metrics |
---|---|
batch_size: 32 | f1-score: 0.7373493975903614 |
hist_equalization: True | mse: 0.0021393178 |
image_resolution:(256, 256) | optimal mse threshold: 0.0005970913 |
num_epochs: 500 | roc-auc: 0.45168714041362146 |
- Augmentation parameter:
Parameter | Augmentation |
---|---|
iaa.Fliplr(0.5) | Flip horizontally with 50% |
- Last image
-
Loss
- Does not overfit.
-
False positive: highest MSE
- Have a lot of noisy space around the hand
- Not common angles
- Black image
-
False negative: lowest MSE
- Common angles
- Space around the hand is not to noisy
- True negative: lowest MSE
-
True positive: highest MSE
- Images with a lot of noise
- Uncommon angles