Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature](mlu-ops): add dcn_forward and dcn_backward_weight op #912

Merged
merged 1 commit into from
Jan 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion docs/MLU-OPS-OpList.md
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -101,4 +101,6 @@ MLU Binary Op算子结构: 
| voxel_pooling_forward | √ | |
| voxelization | √ | |
| yolo_box | √ | |
| dcn_backward_data | | √ |
| dcn_backward_data | | √ |
| dcn_forward | | √ |
| dcn_backward_weight | | √ |
24 changes: 18 additions & 6 deletions docs/user_guide/9_operators/index.rst
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,24 @@ mluOpCopy
-----------------------------
该算子主要在语音网络中使用,对数据块进行 device 到 device 的拷贝。

.. _dcn_backward_data:

mluOpDCNBackwardData
---------------------------------
该算子用于求取可变形卷积算子关于input、offset、mask的反向梯度。

.. _dcn_backward_weight:

mluOpDCNBackwardWeight
-----------------------------
求取可变形卷积算子关于filter和bias的反向梯度。

.. _dcn_forward:

mluOpDCNForward
-----------------------------
可变形卷积。通过额外的offset和mask来增强滤波器对空间的几何表达能力,并且该卷积可以任意替代之前卷及网络里面的任意常规卷积层。

.. _deform_roi_pool_backward:

mluOpDeformRoiPoolBackward
Expand Down Expand Up @@ -1008,9 +1026,3 @@ mluOpConcat
- ``N`` 为每个input和output的维度数。
- ``sum(axis_1, ..., axis_m)`` 表示对待拼接维度求和,output的拼接维度大小为所有input拼接维度的总和。
- 除拼接维度外,其余维度的大小需要相等。

.. _dcn_backward_data:

mluOpDCNBackwardData
---------------------------------
该算子用于求取可变形卷积算子关于input、offset、mask的反向梯度。
2 changes: 2 additions & 0 deletions kernel_depends.toml
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,5 @@ deform_roi_pool_forward = ["deform_roi_pool"]
deform_roi_pool_backward = ["deform_roi_pool"]
carafe_forward = ["carafe"]
carafe_backward = ["carafe"]
dcn_backward_weight = ["dcn_forward"]
dcn_backward_data = ["dcn_forward"]
40 changes: 2 additions & 38 deletions kernels/dcn_backward_data/dcn_backward_data.cpp
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*************************************************************************
* Copyright (C) [2022] by Cambricon, Inc.
* Copyright (C) [2024] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
Expand All @@ -26,43 +26,7 @@

#include "kernels/utils/cnnl_helper.h"

#define DCNBPDATA_API "mluOpDcnBackwardData"

mluOpStatus_t MLUOP_WIN_API
mluOpCreateDCNDescriptor(mluOpDCNDescriptor_t *dcn_desc) {
PARAM_CHECK(DCNBPDATA_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(cnnlCreateDCNDescriptor(dcn_desc), CNNL_STATUS_SUCCESS,
"[mluOpCreateDCNDescriptor] Internal error accured in "
"cnnlCreateDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API
mluOpDestroyDCNDescriptor(mluOpDCNDescriptor_t dcn_desc) {
PARAM_CHECK(DCNBPDATA_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(cnnlDestroyDCNDescriptor(dcn_desc), CNNL_STATUS_SUCCESS,
"[mluOpDestroyDCNDescriptor] Internal error accured in "
"cnnlDestroyDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API mluOpSetDCNDescriptor(
mluOpDCNDescriptor_t dcn_desc, int dimNb, const int pad[],
const int stride[], const int dilation[], int deformable_group,
int conv_group, int im2col_step, const mluOpDataType_t compute_type) {
PARAM_CHECK(DCNBPDATA_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(
cnnlSetDCNDescriptor(dcn_desc, dimNb, pad, stride, dilation,
deformable_group, conv_group, im2col_step,
cnnlDataType_t(compute_type)),
CNNL_STATUS_SUCCESS,
"[mluOpSetDCNDescriptor] Internal error accured in "
"cnnlSetDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}
#define DCNBPDATA_API "mluOpDCNBackwardData"

mluOpStatus_t MLUOP_WIN_API mluOpGetDCNBakcwardDataWorkspaceSize(
mluOpHandle_t handle, const mluOpDCNDescriptor_t dcn_desc,
Expand Down
109 changes: 109 additions & 0 deletions kernels/dcn_backward_weight/dcn_backward_weight.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*************************************************************************
* Copyright (C) [2024] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include <limits.h>
#include <math.h>
#include <vector>

#include "kernels/utils/cnnl_helper.h"

#define DCNBACKWARDWEIGHT_API "mluOpDCNBackwardWeight"

mluOpStatus_t MLUOP_WIN_API mluOpGetDCNBackwardWeightWorkspaceSize(
mluOpHandle_t handle, const mluOpDCNDescriptor_t dcn_desc,
const mluOpTensorDescriptor_t input_desc,
const mluOpTensorDescriptor_t offset_desc,
const mluOpTensorDescriptor_t mask_desc,
const mluOpTensorDescriptor_t grad_output_desc,
const mluOpTensorDescriptor_t grad_filter_desc,
const mluOpTensorDescriptor_t grad_bias_desc, size_t *size) {
PARAM_CHECK("mluOpDCNBackwardWeight", handle != NULL);
PARAM_CHECK("mluOpDCNBackwardWeight", dcn_desc != NULL);
DEFINE_CREATE_AND_SET_CNNL_HANDLE(handle, _handle);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(input_desc, _input_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(offset_desc, _offset_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(mask_desc, _mask_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_output_desc,
_grad_output_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_filter_desc,
_grad_filter_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_bias_desc, _grad_bias_desc);
CHECK_FUNC_RETURN(
cnnlGetDCNBackwardWeightWorkspaceSize(
_handle, dcn_desc, _input_desc, _offset_desc, _mask_desc,
_grad_output_desc, _grad_filter_desc, _grad_bias_desc, size),
CNNL_STATUS_SUCCESS,
"[mluOpDCNBackwardWeight] Internal error accured in "
"mluOpGetDCNBackwardWeightWorkspaceSize.", // NOLINT
MLUOP_STATUS_INTERNAL_ERROR);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_input_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_offset_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_mask_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_grad_output_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_grad_filter_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(_grad_bias_desc);
DESTROY_CNNL_HANDLE(_handle);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API mluOpDCNBackwardWeight(
mluOpHandle_t handle, const mluOpDCNDescriptor_t dcn_desc,
const mluOpTensorDescriptor_t input_desc, const void *input,
const mluOpTensorDescriptor_t offset_desc, const void *offset,
const mluOpTensorDescriptor_t mask_desc, const void *mask,
const mluOpTensorDescriptor_t grad_output_desc, const void *grad_output,
void *workspace, const size_t workspace_size,
const mluOpTensorDescriptor_t grad_filter_desc, void *grad_filter,
const mluOpTensorDescriptor_t grad_bias_desc, void *grad_bias) {
PARAM_CHECK(DCNBACKWARDWEIGHT_API, handle != NULL);
if (workspace_size > 0) {
PARAM_CHECK(DCNBACKWARDWEIGHT_API, workspace != NULL);
}
DEFINE_CREATE_AND_SET_CNNL_HANDLE(handle, cnnl_handle);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(input_desc, cnnl_input_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(offset_desc, cnnl_offset_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(mask_desc, cnnl_mask_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_output_desc,
cnnl_grad_output_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_filter_desc,
cnnl_grad_filter_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(grad_bias_desc,
cnnl_grad_bias_desc);
CHECK_FUNC_RETURN(
cnnlDCNBackwardWeight(cnnl_handle, dcn_desc, cnnl_input_desc, input,
cnnl_offset_desc, offset, cnnl_mask_desc, mask,
cnnl_grad_output_desc, grad_output, workspace,
workspace_size, cnnl_grad_filter_desc, grad_filter,
cnnl_grad_bias_desc, grad_bias),
CNNL_STATUS_SUCCESS,
"[mluOpDcnBackwardWeight] Internal error accured in "
"mluOpDcnBackwardWeight.",
MLUOP_STATUS_INTERNAL_ERROR);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_input_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_offset_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_mask_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_grad_output_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_grad_filter_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_grad_bias_desc);
DESTROY_CNNL_HANDLE(cnnl_handle);
return MLUOP_STATUS_SUCCESS;
}
69 changes: 69 additions & 0 deletions kernels/dcn_forward/dcn_common.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/*************************************************************************
* Copyright (C) [2022] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#ifndef KERNELS_DCN_COMMON_DCN_COMMON_H
#define KERNELS_DCN_COMMON_DCN_COMMON_H
#include <limits.h>
#include <math.h>
#include <vector>

#include "kernels/utils/cnnl_helper.h"

#define DCN_API "mluOpDCN"

mluOpStatus_t MLUOP_WIN_API
mluOpCreateDCNDescriptor(mluOpDCNDescriptor_t *dcn_desc) {
PARAM_CHECK(DCN_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(cnnlCreateDCNDescriptor(dcn_desc), CNNL_STATUS_SUCCESS,
"[mluOpDcn] Internal error accured in "
"mluOpCreateDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API
mluOpDestroyDCNDescriptor(mluOpDCNDescriptor_t dcn_desc) {
PARAM_CHECK(DCN_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(cnnlDestroyDCNDescriptor(dcn_desc), CNNL_STATUS_SUCCESS,
"[mluOpDcn] Internal error accured in "
"mluOpDestroyDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API mluOpSetDCNDescriptor(
mluOpDCNDescriptor_t dcn_desc, int dimNb, const int pad[],
const int stride[], const int dilation[], int deformable_group,
int conv_group, int im2col_step, const mluOpDataType_t compute_type) {
PARAM_CHECK(DCN_API, dcn_desc != NULL);
CHECK_FUNC_RETURN(
cnnlSetDCNDescriptor(dcn_desc, dimNb, pad, stride, dilation,
deformable_group, conv_group, im2col_step,
cnnlDataType_t(compute_type)),
CNNL_STATUS_SUCCESS,
"[mluOpDcn] Internal error accured in "
"mluOpSetDCNDescriptor.",
MLUOP_STATUS_INTERNAL_ERROR);
return MLUOP_STATUS_SUCCESS;
}

#endif // KERNELS_DCN_COMMON_DCN_COMMON_H
103 changes: 103 additions & 0 deletions kernels/dcn_forward/dcn_forward.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/*************************************************************************
* Copyright (C) [2024] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include "kernels/dcn_forward/dcn_common.h"

#define DCNFORWARD_API "mluOpDCNForward"

mluOpStatus_t MLUOP_WIN_API mluOpGetDCNForwardWorkspaceSize(
mluOpHandle_t handle, const mluOpDCNDescriptor_t dcn_desc,
const mluOpTensorDescriptor_t input_desc,
const mluOpTensorDescriptor_t offset_desc,
const mluOpTensorDescriptor_t mask_desc,
const mluOpTensorDescriptor_t filter_desc,
const mluOpTensorDescriptor_t bias_desc,
const mluOpTensorDescriptor_t output_desc, size_t *size) {
PARAM_CHECK("mluOpDCNForward", handle != NULL);
PARAM_CHECK("mluOpDCNForward", dcn_desc != NULL);
PARAM_CHECK("mluOpDCNForward", input_desc != NULL);
PARAM_CHECK("mluOpDCNForward", offset_desc != NULL);
PARAM_CHECK("mluOpDCNForward", filter_desc != NULL);
PARAM_CHECK("mluOpDCNForward", output_desc != NULL);
PARAM_CHECK("mluOpDCNForward", size != NULL);
DEFINE_CREATE_AND_SET_CNNL_HANDLE(handle, cnnl_handle);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(input_desc, cnnl_input_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(offset_desc, cnnl_offset_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(mask_desc, cnnl_mask_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(filter_desc, cnnl_filter_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(bias_desc, cnnl_bias_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(output_desc, cnnl_output_desc);
CHECK_FUNC_RETURN(cnnlGetDCNForwardWorkspaceSize(
cnnl_handle, dcn_desc, cnnl_input_desc,
cnnl_offset_desc, cnnl_mask_desc, cnnl_filter_desc,
cnnl_bias_desc, cnnl_output_desc, size),
CNNL_STATUS_SUCCESS,
"[mluOpDCNForward] Internal error accured in "
"mluOpGetDCNForwardWorkspaceSize.", // NOLINT
duzekunKTH marked this conversation as resolved.
Show resolved Hide resolved
MLUOP_STATUS_INTERNAL_ERROR);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_input_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_offset_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_mask_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_filter_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_bias_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_output_desc);
DESTROY_CNNL_HANDLE(cnnl_handle);
return MLUOP_STATUS_SUCCESS;
}

mluOpStatus_t MLUOP_WIN_API
mluOpDCNForward(mluOpHandle_t handle, const mluOpDCNDescriptor_t dcn_desc,
const mluOpTensorDescriptor_t input_desc, const void *input,
const mluOpTensorDescriptor_t offset_desc, const void *offset,
const mluOpTensorDescriptor_t mask_desc, const void *mask,
const mluOpTensorDescriptor_t filter_desc, const void *filter,
const mluOpTensorDescriptor_t bias_desc, const void *bias,
void *workspace, size_t workspace_size,
const mluOpTensorDescriptor_t output_desc, void *output) {
PARAM_CHECK(DCNFORWARD_API, handle != NULL);
if (workspace_size > 0) {
PARAM_CHECK(DCNFORWARD_API, workspace != NULL);
}
DEFINE_CREATE_AND_SET_CNNL_HANDLE(handle, cnnl_handle);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(input_desc, cnnl_input_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(offset_desc, cnnl_offset_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(mask_desc, cnnl_mask_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(filter_desc, cnnl_filter_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(bias_desc, cnnl_bias_desc);
DEFINE_CREATE_AND_SET_CNNL_TENSOR_DESCRIPTOR(output_desc, cnnl_output_desc);
CHECK_FUNC_RETURN(
cnnlDCNForward(cnnl_handle, dcn_desc, cnnl_input_desc, input,
cnnl_offset_desc, offset, cnnl_mask_desc, mask,
cnnl_filter_desc, filter, cnnl_bias_desc, bias, workspace,
workspace_size, cnnl_output_desc, output),
CNNL_STATUS_SUCCESS,
"[mluOpDcnForward] Internal error accured in mluOpDcnForward.",
MLUOP_STATUS_INTERNAL_ERROR);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_input_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_offset_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_mask_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_filter_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_bias_desc);
DESTROY_CNNL_TENSOR_DESCRIPTOR(cnnl_output_desc);
DESTROY_CNNL_HANDLE(cnnl_handle);
return MLUOP_STATUS_SUCCESS;
}
Loading