Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

simplify low mass convective star #52

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 24 additions & 71 deletions low_mass_convective_star/init_1d.H
Original file line number Diff line number Diff line change
Expand Up @@ -191,62 +191,21 @@ AMREX_INLINE void init_1d() {
p_want = model_hse(i-1, model::ipres) +
delx * ((1.0_rt - rfrac) * dens_zone + rfrac * model_hse(i-1, model::idens)) * g_zone;

// now we have two functions to zero:
// A = p_want - p(rho,T)
// B = entropy_want - s(rho,T)
// We use a two dimensional Taylor expansion
// and find the deltas for both density and
// temperature

eos_state.T = temp_zone;
eos_state.rho = dens_zone;
eos_state.T = temp_zone; // initial guess
eos_state.rho = dens_zone; // initial guess
eos_state.p = p_want;
eos_state.s = entropy_want(i);
for (int n = 0; n < NumSpec; ++n) {
eos_state.xn[n] = xn[n];
}

// (t, rho) -> (p, s)
eos(eos_input_rt, eos_state);

entropy = eos_state.s;
pres_zone = eos_state.p;

Real dpT = eos_state.dpdT;
Real dpd = eos_state.dpdr;
Real dsT = eos_state.dsdT;
Real dsd = eos_state.dsdr;

Real A = p_want - pres_zone;
Real B = entropy_want(i) - entropy;

Real dAdT = -dpT;
Real dAdrho = (1.0_rt - rfrac) * delx * g_zone - dpd;
Real dBdT = -dsT;
Real dBdrho = -dsd;
eos(eos_input_ps, eos_state);

dtemp = (B - (dBdrho / dAdrho) * A) /
((dBdrho / dAdrho) * dAdT - dBdT);
drho = eos_state.rho - dens_zone;
dens_zone = eos_state.rho;

drho = -(A + dAdT * dtemp) / dAdrho;

dens_zone =
amrex::max(0.9_rt * dens_zone,
amrex::min(dens_zone + drho, 1.1_rt * dens_zone));

temp_zone =
amrex::max(0.9_rt * temp_zone,
amrex::min(temp_zone + dtemp, 1.1_rt * temp_zone));

// check if the density falls below our minimum
// cut-off -- if so, floor it

if (dens_zone < problem_rp::low_density_cutoff) {

dens_zone = problem_rp::low_density_cutoff;
temp_zone = problem_rp::temp_fluff;
converged_hse = true;
fluff = true;
break;
}
dtemp = eos_state.T - temp_zone;
temp_zone = eos_state.T;

if (std::abs(drho) < TOL_HSE * dens_zone &&
std::abs(dtemp) < TOL_HSE * temp_zone) {
Expand All @@ -264,41 +223,35 @@ AMREX_INLINE void init_1d() {
temp_zone = model_hse(i-1, model::itemp);

eos_state.T = temp_zone;
eos_state.rho = dens_zone;
eos_state.rho = dens_zone; // initial guess
eos_state.p = p_want;
for (int n = 0; n < NumSpec; ++n) {
eos_state.xn[n] = xn[n];
}

// (t, rho) -> (p, s)

eos(eos_input_rt, eos_state);

entropy = eos_state.s;
pres_zone = eos_state.p;

Real dpd = eos_state.dpdr;

drho = (p_want - pres_zone) / (dpd - (1.0_rt - rfrac) * delx * g_zone);
eos(eos_input_tp, eos_state);

dens_zone =
amrex::max(0.9_rt * dens_zone,
amrex::min(dens_zone + drho, 1.1_rt * dens_zone));
drho = eos_state.rho - dens_zone;
dens_zone = eos_state.rho;

if (std::abs(drho) < TOL_HSE * dens_zone) {
converged_hse = true;
break;
}

if (dens_zone < problem_rp::low_density_cutoff) {
}

dens_zone = problem_rp::low_density_cutoff;
temp_zone = problem_rp::temp_fluff;
converged_hse = true;
fluff = true;
break;
}
// check if the density falls below our minimum
// cut-off -- if so, floor it

if (dens_zone < problem_rp::low_density_cutoff) {
dens_zone = problem_rp::low_density_cutoff;
temp_zone = problem_rp::temp_fluff;
converged_hse = true;
fluff = true;
break;
}

} // thermo iteration loop

if (! converged_hse) {
Expand Down
Loading