forked from Metu-Sensor-Fusion-Lab/Multi-Ellipsoidal-Extended-Target-Tracking-with-Variational-Bayes-Inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiEllipseVB.m
238 lines (201 loc) · 7.59 KB
/
MultiEllipseVB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
function [statsout, logpyy] = MultiEllipseVB(Y,stats,initstats,model,algorithm)
% Implementation of the measurement update of
% "Multi-Ellipsoidal Extended Target Tracking with Variational Bayes Inference"
% By Barkın Tuncer, Umut Orguner, Emre Özkan
% INPUTS
% Y: Measurements (2 x Ny double) (Ny is the number of measurements)
% stats: Predicted Statistics (structure)
% stats.x: Predicted kinematic mean (2*L+1 x 1 double)
% stats.P: Predicted kinematic covariance (2*L+1 x 2*L+1 double)
% stats.v: Predicted extent dof (1xL double)
% stats.V: Predicted extent scale matrices (ny x ny x L double)
% stats.a: Predicted Dirichlet parameters (1xL double)
% initstats: Initial Statistics (structure) (Optional. Set [] if not necessary. When set [] the VB iterations are started based on predicted statistics (i.e., stats))
% initstats.x: Initial kinematic mean (2*L+1 x 1 double)
% initstats.P: Initial kinematic covariance (2*L+1 x 2*L+1 double)
% initstats.v: Initial extent dof (1xL double)
% initstats.V: Initial extent scale matrices (ny x ny x L double)
% initstats.a: Initial Dirichlet parameters (1xL double)
% model: Measurement Model Parameters (structure)
% model.N: Measurement dimension ny (1 x 1 integer)
% model.R: Measurement noise Covariance (ny x ny double)
% model.H: Measurement matrices for extent components (ny x 2*L+1 x L double)
% model.s: Measurement scale parameter (1 x 1 double)
% algorithm: Algorithm Parameters (structure)
% algorithm.L=L: Number of extent ellipsoids (1 x 1 integer)
% algorithm.convergenceThreshold: Convergence threshold in VB (1 x 1 double)
% algorithm.maxNiter: Maximum number of iterations in VB (1 x 1 integer)
% OUTPUTS
% statsout: Updated Statistics (structure)
% statsout.x: Updated kinematic mean (2*L+1 x 1 double)
% statsout.P: Updated kinematic covariance (2*L+1 x 2*L+1 double)
% statsout.v: Updated extent dof (1xL double)
% statsout.V: Updated extent scale matrices (ny x ny x L double)
% statsout.a: Updated Dirichlet parameters (1xL double)
% logpyy: Predictive likelihood (1 x 1 double)
ny=model.n;
s=model.s;
R=model.R;
H=model.H;
L=algorithm.L;
maxNiter=algorithm.maxNiter;
convergenceThreshold=algorithm.convergenceThreshold;
statsout=stats;
%Predicted quantities
x = stats.x;
P = stats.P;
v = stats.v;
V = stats.V;
a = stats.a;
nx = length(x);
if isempty(initstats)
%initialize VB iteration
xkk_ = stats.x;
%Pkk_= stats.P;
Pkk_= zeros(nx);
vkk_ = stats.v;
Vkk_ = stats.V;
akk_ = stats.a;
else
xkk_ = initstats.x;
Pkk_= initstats.P;
vkk_ = initstats.v;
Vkk_ = initstats.V;
akk_ = initstats.a;
end
zkk_ = Y;
Nmeas = size(Y,2);
Pzkk_ = repmat(zeros(ny),1,1,Nmeas);
%Allocate
xkk = xkk_;
Pkk = Pkk_;
vkk = vkk_;
Vkk = Vkk_;
akk = akk_;
zkk = zkk_;
Pzkk = Pzkk_;
loggammakk = zeros(Nmeas,L);
invsX=zeros(ny,ny,L);
invsXHxkk_=zeros(ny,L);
Hxkk_=zeros(ny,L);
HPkk_H=zeros(ny,ny,L);
Wjl=zeros(ny,ny,Nmeas,L);
invR=inv(R);%R^-1
invP=inv(P);% inv(P_k|k-1)
iter=0;
convergenceStat=inf;
plotFlag=0; % For debugging purposes, make this 1, then the extent ellipsoids will be drawn at each VB iteration.
if plotFlag %Plot Extent Ellipsoids with Measurements (For debugging purposes)
plotstats.x=xkk;
plotstats.P=Pkk;
plotstats.v=vkk;
plotstats.V=Vkk;
plotstats.a=akk;
figure(547)
plot(Y(1,:),Y(2,:),'.')
hold on
plot(zkk(1,:),zkk(2,:),'r.')
[GM, ~, ~]=convertMultiEllipseTracktoGM(plotstats);
for ell=1:L
drawEllipse(GM.x(:,ell),GM.P(:,:,ell),1,gca,1.5,[0, 0.4470, 0.7410]);
end
title(['Iteration No:', num2str(iter)])
pause(0.5)
cla
end
while iter<maxNiter && convergenceStat>convergenceThreshold
iter=iter+1;
oldxkk=xkk;
for ell=1:L%Do these calculations only once in each iteration. Not as many as the number of measurements in the double for loop below
invsX(:,:,ell)=(vkk_(ell) - ny - 1)*inv(s*Vkk_(:,:,ell)); %Find E[inv(sXk)] only once
invsXHxkk_(:,ell) = invsX(:,:,ell) * H(:,:,ell) * xkk_;
Hxkk_(:,ell)=H(:,:,ell)*xkk_;
HPkk_H(:,:,ell)=H(:,:,ell) * Pkk_ * H(:,:,ell)';
temploggammatildekk=psi(akk_(ell)) - psi(sum(akk_))- 0.5 * log(det(Vkk_(:,:,ell))) + 0.5*ny*log(2) + 0.5 *sum(psi((vkk_(ell) - ny - [1:ny])/2));
for j=1:Nmeas
Wjl(:,:,j,ell) = (zkk_(:,j) - Hxkk_(:,ell)) * (zkk_(:,j) - Hxkk_(:,ell))'+ Pzkk_(:,:,j)+ HPkk_H(:,:,ell);%22
%loggammakk(j,ell) = temploggammatildekk - 0.5*trace(invsX(:,:,ell)* Wjl(:,:,j,ell));%23
loggammakk(j,ell) = temploggammatildekk - 0.5*(invsX(1,:,ell)*Wjl(:,1,j,ell)+invsX(2,:,ell)*Wjl(:,2,j,ell));%23
end
end
for j=1:Nmeas
loggammakk(j,:)=loggammakk(j,:)-logSum(loggammakk(j,:));%Normalize
end
gammakk = exp(loggammakk);%26
vkk = v + sum(gammakk,1);%34
akk = a + sum(gammakk,1);%36
Vkk=V; %Set Vkk to predicted V initially
for j = 1 : Nmeas
tmpCov = zeros(ny);
for ell = 1 : L
tmpCov = tmpCov + gammakk(j,ell) * invsX(:,:,ell);%30
Vkk(:,:,ell)=Vkk(:,:,ell)+(gammakk(j,ell)/s)*Wjl(:,:,j,ell);%35
end
Pzkk(:,:,j) = inv(invR + tmpCov);%30
zkk(:,j) = Pzkk(:,:,j) * (invR * Y(:,j) + invsXHxkk_*gammakk(j,:)');%31
end
invPkk=invP;% Set posterior information matrix to prior information matrix initially
invPkkxkk=invP*x;% Set posterior information vector to prior information vector initially
for ell=1:L
invPkkxkk=invPkkxkk+H(:,:,ell)'*invsX(:,:,ell)*zkk_*gammakk(:,ell);%42
invPkk=invPkk+sum(gammakk(:,ell))*H(:,:,ell)'*invsX(:,:,ell)*H(:,:,ell);%43
end
Pkk=inv(invPkk);
xkk=Pkk*invPkkxkk;
convergenceStat=max(max(abs(xkk-oldxkk)));
xkk_ = xkk;
Pkk_ = Pkk;
Vkk_ = Vkk;
vkk_ = vkk;
zkk_ = zkk;
Pzkk_ = Pzkk;
akk_ = akk;
if plotFlag %Plot Extent Ellipsoids with Measurements (For debugging purposes)
plotstats.x=xkk;
plotstats.P=Pkk;
plotstats.v=vkk;
plotstats.V=Vkk;
plotstats.a=akk;
figure(547)
plot(Y(1,:),Y(2,:),'.')
hold on
plot(zkk(1,:),zkk(2,:),'r.')
[GM, ~, ~]=convertMultiEllipseTracktoGM(plotstats);
for ell=1:L
drawEllipse(GM.x(:,ell),GM.P(:,:,ell),1,gca,1.5,[0, 0.4470, 0.7410]);
end
title(['Iteration No:', num2str(iter)])
pause(0.5)
cla
end
end
statsout.x=xkk;
statsout.P=Pkk;
statsout.v=vkk;
statsout.V=Vkk;
statsout.a=akk;
%Calculate the predictive likelihood
logpyy=sum(logmvnpdf((Y-zkk),zeros(2,1),R));
for j=1:Nmeas
logpyy=logpyy+0.5*log(det(2*Pzkk(:,:,j)/s))-0.5*(trace(invR*Pzkk(:,:,j))-ny);
end
for ell=1:L
logpyy=logpyy-0.5*(vkk(ell)-ny-1)*log(det(Vkk(:,:,ell)))+0.5*(v(ell)-ny-1)*log(det(V(:,:,ell)));
logpyy=logpyy+logGammad(0.5*(vkk(ell)-ny-1),ny)-logGammad(0.5*(v(ell)-ny-1),ny);
end
logpyy=logpyy-0.5*(trace(Pkk*invP)-nx)+0.5*log(det(2*pi*Pkk))+logmvnpdf(xkk,x,P);
logpyy=logpyy-sum(sum(exp(loggammakk).*loggammakk));
suma=sum(a);
sumakk=sum(akk);
logpyy=logpyy+gammaln(suma)-sum(gammaln(a))-gammaln(sumakk)+sum(gammaln(akk));
function outlogGammad=logGammad(x,d)
D=1:d;
outlogGammad=0.25*d*(d-1)*log(pi)+sum(gammaln(x-0.5*(D-1)));
function out=logmvnpdf(y,x,P)
Ny=size(y,2);
difference=y-repmat(x,1,Ny);
out=-0.5*log(det(2*pi*P))-0.5*sum(difference'.*(difference'/P),2);
function [logOfSum] = logSum(logA)
N=size(logA,1);
maxLogA = max(logA);
logOfSum = maxLogA+log(sum(exp(logA-repmat(maxLogA,N,1))));