-
-
Notifications
You must be signed in to change notification settings - Fork 593
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
468 additions
and
132 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# -*- coding: utf-8 -*- | ||
# @Time : 2019/12/4 14:54 | ||
# @Author : zhoujun | ||
import torch | ||
from torch import nn | ||
|
||
class DBHead(nn.Module): | ||
def __init__(self, in_channels, out_channels, k = 50): | ||
super().__init__() | ||
self.k = k | ||
self.binarize = nn.Sequential( | ||
nn.Conv2d(in_channels, in_channels // 4, 3, padding=1), | ||
nn.BatchNorm2d(in_channels // 4), | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 4, 2, 1), | ||
nn.BatchNorm2d(in_channels // 4), | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels // 4, 1, 4, 2, 1), | ||
) | ||
self.binarize.apply(self.weights_init) | ||
|
||
self.thresh = self._init_thresh(in_channels) | ||
self.thresh.apply(self.weights_init) | ||
|
||
def forward(self, x): | ||
shrink_maps = self.binarize(x) | ||
threshold_maps = self.thresh(x) | ||
if self.training: | ||
binary_maps = self.step_function(shrink_maps.sigmoid(), threshold_maps) | ||
y = torch.cat((shrink_maps, threshold_maps, binary_maps), dim=1) | ||
else: | ||
y = torch.cat((shrink_maps, threshold_maps), dim=1) | ||
return y | ||
|
||
def weights_init(self, m): | ||
classname = m.__class__.__name__ | ||
if classname.find('Conv') != -1: | ||
nn.init.kaiming_normal_(m.weight.data) | ||
elif classname.find('BatchNorm') != -1: | ||
m.weight.data.fill_(1.) | ||
m.bias.data.fill_(1e-4) | ||
|
||
def _init_thresh(self, inner_channels, serial=False, smooth=False, bias=False): | ||
in_channels = inner_channels | ||
if serial: | ||
in_channels += 1 | ||
self.thresh = nn.Sequential( | ||
nn.Conv2d(in_channels, inner_channels // 4, 3, padding=1, bias=bias), | ||
nn.BatchNorm2d(inner_channels // 4), | ||
nn.ReLU(inplace=True), | ||
self._init_upsample(inner_channels // 4, inner_channels // 4, smooth=smooth, bias=bias), | ||
nn.BatchNorm2d(inner_channels // 4), | ||
nn.ReLU(inplace=True), | ||
self._init_upsample(inner_channels // 4, 1, smooth=smooth, bias=bias), | ||
nn.Sigmoid()) | ||
return self.thresh | ||
|
||
def _init_upsample(self, in_channels, out_channels, smooth=False, bias=False): | ||
if smooth: | ||
inter_out_channels = out_channels | ||
if out_channels == 1: | ||
inter_out_channels = in_channels | ||
module_list = [ | ||
nn.Upsample(scale_factor=2, mode='nearest'), | ||
nn.Conv2d(in_channels, inter_out_channels, 3, 1, 1, bias=bias)] | ||
if out_channels == 1: | ||
module_list.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1, bias=True)) | ||
return nn.Sequential(module_list) | ||
else: | ||
return nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1) | ||
|
||
def step_function(self, x, y): | ||
return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from torchvision.models import resnet101 | ||
|
||
import DBHead | ||
import einops | ||
|
||
class ImageMultiheadSelfAttention(nn.Module) : | ||
def __init__(self, planes): | ||
super(ImageMultiheadSelfAttention, self).__init__() | ||
self.attn = nn.MultiheadAttention(planes, 8) | ||
def forward(self, x) : | ||
res = x | ||
n, c, h, w = x.shape | ||
x = einops.rearrange(x, 'n c h w -> (h w) n c') | ||
x = self.attn(x, x, x)[0] | ||
x = einops.rearrange(x, '(h w) n c -> n c h w', n = n, c = c, h = h, w = w) | ||
return res + x | ||
|
||
class double_conv(nn.Module): | ||
def __init__(self, in_ch, mid_ch, out_ch, stride = 1, planes = 256): | ||
super(double_conv, self).__init__() | ||
self.planes = planes | ||
# down = None | ||
# if stride > 1 : | ||
# down = nn.Sequential( | ||
# nn.AvgPool2d(2, 2), | ||
# nn.Conv2d(in_ch + mid_ch, self.planes * Bottleneck.expansion, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(self.planes * Bottleneck.expansion) | ||
# ) | ||
self.down = None | ||
if stride > 1 : | ||
self.down = nn.AvgPool2d(2,stride=2) | ||
self.conv = nn.Sequential( | ||
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=3, padding=1, stride = 1, bias=False), | ||
nn.BatchNorm2d(mid_ch), | ||
nn.ReLU(inplace=True), | ||
#Bottleneck(mid_ch, self.planes, stride, down, 2, 1, avd = True, norm_layer = nn.BatchNorm2d), | ||
nn.Conv2d(mid_ch, out_ch, kernel_size=3, stride = 1, padding=1, bias=False), | ||
nn.BatchNorm2d(out_ch), | ||
nn.ReLU(inplace=True), | ||
) | ||
|
||
def forward(self, x): | ||
if self.down is not None : | ||
x = self.down(x) | ||
x = self.conv(x) | ||
return x | ||
|
||
class double_conv_up(nn.Module): | ||
def __init__(self, in_ch, mid_ch, out_ch, stride = 1, planes = 256): | ||
super(double_conv_up, self).__init__() | ||
self.planes = planes | ||
# down = None | ||
# if stride > 1 : | ||
# down = nn.Sequential( | ||
# nn.AvgPool2d(2, 2), | ||
# nn.Conv2d(in_ch + mid_ch, self.planes * Bottleneck.expansion, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(self.planes * Bottleneck.expansion) | ||
# ) | ||
self.down = None | ||
if stride > 1 : | ||
self.down = nn.AvgPool2d(2,stride=2) | ||
self.conv = nn.Sequential( | ||
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=3, padding=1, stride = 1, bias=False), | ||
nn.BatchNorm2d(mid_ch), | ||
nn.ReLU(inplace=True), | ||
#Bottleneck(mid_ch, self.planes, stride, down, 2, 1, avd = True, norm_layer = nn.BatchNorm2d), | ||
nn.Conv2d(mid_ch, mid_ch, kernel_size=3, stride = 1, padding=1, bias=False), | ||
nn.BatchNorm2d(mid_ch), | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(mid_ch, out_ch, kernel_size=4, stride = 2, padding=1, bias=False), | ||
nn.BatchNorm2d(out_ch), | ||
nn.ReLU(inplace=True), | ||
) | ||
|
||
def forward(self, x): | ||
if self.down is not None : | ||
x = self.down(x) | ||
x = self.conv(x) | ||
return x | ||
|
||
class TextDetection(nn.Module) : | ||
def __init__(self, pretrained=None) : | ||
super(TextDetection, self).__init__() | ||
self.backbone = resnet101(pretrained=True if pretrained else False) | ||
|
||
self.conv_db = DBHead.DBHead(64, 0) | ||
|
||
self.conv_mask = nn.Sequential( | ||
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), | ||
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), | ||
nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), | ||
nn.Conv2d(32, 1, kernel_size=1), | ||
nn.Sigmoid() | ||
) | ||
|
||
self.down_conv1 = double_conv(0, 512, 512, 2) | ||
self.down_conv2 = double_conv(0, 512, 512, 2) | ||
self.down_conv3 = double_conv(0, 512, 512, 2) | ||
|
||
self.upconv1 = double_conv_up(0, 512, 256) | ||
self.upconv2 = double_conv_up(256, 512, 256) | ||
self.upconv3 = double_conv_up(256, 512, 256) | ||
self.upconv4 = double_conv_up(256, 512, 256, planes = 128) | ||
self.upconv5 = double_conv_up(256, 256, 128, planes = 64) | ||
self.upconv6 = double_conv_up(128, 128, 64, planes = 32) | ||
self.upconv7 = double_conv_up(64, 64, 64, planes = 16) | ||
|
||
self.proj_h4 = nn.Conv2d(64 * 4, 64, 1) | ||
self.proj_h8 = nn.Conv2d(128 * 4, 128, 1) | ||
self.proj_h16 = nn.Conv2d(256 * 4, 256, 1) | ||
self.proj_h32 = nn.Conv2d(512 * 4, 512, 1) | ||
|
||
def forward(self, x) : | ||
x = self.backbone.conv1(x) | ||
x = self.backbone.bn1(x) | ||
x = self.backbone.relu(x) | ||
x = self.backbone.maxpool(x) # 64@384 | ||
|
||
h4 = self.backbone.layer1(x) # 64@384 | ||
h8 = self.backbone.layer2(h4) # 128@192 | ||
h16 = self.backbone.layer3(h8) # 256@96 | ||
h32 = self.backbone.layer4(h16) # 512@48 | ||
|
||
h4 = self.proj_h4(h4) | ||
h8 = self.proj_h8(h8) | ||
h16 = self.proj_h16(h16) | ||
h32 = self.proj_h32(h32) | ||
|
||
h64 = self.down_conv1(h32) # 512@24 | ||
h128 = self.down_conv2(h64) # 512@12 | ||
h256 = self.down_conv3(h128) # 512@6 | ||
|
||
up256 = self.upconv1(h256) # 128@12 | ||
up128 = self.upconv2(torch.cat([up256, h128], dim = 1)) # 64@24 | ||
up64 = self.upconv3(torch.cat([up128, h64], dim = 1)) # 128@48 | ||
up32 = self.upconv4(torch.cat([up64, h32], dim = 1)) # 64@96 | ||
up16 = self.upconv5(torch.cat([up32, h16], dim = 1)) # 128@192 | ||
up8 = self.upconv6(torch.cat([up16, h8], dim = 1)) # 64@384 | ||
up4 = self.upconv7(torch.cat([up8, h4], dim = 1)) # 64@768 | ||
|
||
return self.conv_db(up8), self.conv_mask(up4) | ||
|
||
if __name__ == '__main__' : | ||
device = torch.device("cuda:0") | ||
net = TextDetection().to(device) | ||
img = torch.randn(2, 3, 1024, 1024).to(device) | ||
db, seg = net(img) | ||
print(db.shape) | ||
print(seg.shape) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.