The Ollama Python library provides the easiest way to integrate Python 3.8+ projects with Ollama.
You need to have a local ollama server running to be able to continue. To do this:
- Download: https://ollama.com/
- Run an LLM: https://ollama.com/library
- Example:
ollama run llama2
- Example:
ollama run llama2:70b
- Example:
Then:
curl https://ollama.ai/install.sh | sh
ollama serve
Next you can go ahead with ollama-python
.
pip install ollama
import ollama
response = ollama.chat(model='llama3', messages=[
{
'role': 'user',
'content': 'Why is the sky blue?',
},
])
print(response['message']['content'])
Response streaming can be enabled by setting stream=True
, modifying function calls to return a Python generator where each part is an object in the stream.
import ollama
stream = ollama.chat(
model='llama3',
messages=[{'role': 'user', 'content': 'Why is the sky blue?'}],
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
The Ollama Python library's API is designed around the Ollama REST API
ollama.chat(model='llama3', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])
ollama.generate(model='llama3', prompt='Why is the sky blue?')
ollama.list()
ollama.show('llama3')
modelfile='''
FROM llama3
SYSTEM You are mario from super mario bros.
'''
ollama.create(model='example', modelfile=modelfile)
ollama.copy('llama3', 'user/llama3')
ollama.delete('llama3')
ollama.pull('llama3')
ollama.push('user/llama3')
ollama.embeddings(model='llama3', prompt='The sky is blue because of rayleigh scattering')
A custom client can be created with the following fields:
host
: The Ollama host to connect totimeout
: The timeout for requests
from ollama import Client
client = Client(host='http://localhost:11434')
response = client.chat(model='llama3', messages=[
{
'role': 'user',
'content': 'Why is the sky blue?',
},
])
import asyncio
from ollama import AsyncClient
async def chat():
message = {'role': 'user', 'content': 'Why is the sky blue?'}
response = await AsyncClient().chat(model='llama3', messages=[message])
asyncio.run(chat())
Setting stream=True
modifies functions to return a Python asynchronous generator:
import asyncio
from ollama import AsyncClient
async def chat():
message = {'role': 'user', 'content': 'Why is the sky blue?'}
async for part in await AsyncClient().chat(model='llama3', messages=[message], stream=True):
print(part['message']['content'], end='', flush=True)
asyncio.run(chat())
Errors are raised if requests return an error status or if an error is detected while streaming.
model = 'does-not-yet-exist'
try:
ollama.chat(model)
except ollama.ResponseError as e:
print('Error:', e.error)
if e.status_code == 404:
ollama.pull(model)