TFPred: Learning Discriminative Representations from Unlabeled Data for Few-Label Rotating Machinery Fault Diagnosis
An official implementation of paper: TFPred: Learning Discriminative Representations from Unlabeled Data for Few-Label Rotating Machinery Fault Diagnosis.
@article{CHEN2024105900,
title = {TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault diagnosis},
journal = {Control Engineering Practice},
volume = {146},
pages = {105900},
year = {2024},
issn = {0967-0661},
author = {Xiaohan Chen and Rui Yang and Yihao Xue and Baoye Song and Zidong Wang}
}
- python 3.9.12
- numpy 1.23.1
- torch 1.13.1
- torchvision 0.14.1
- torchaudio 0.13.1
- tqdm 4.64.0
- scipy 1.8.1
Run-to-failure bearing fault dataset:
Lessmeier, C., Kimotho, J. K., Zimmer, D., & Sextro, W. (2016). Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. Vol. 3, In PHM Society European Conference.
Please replace the datadir
with your dataset path.
python TFPred.py \
--datadir "dataset path"
--mode "train_then_tune" \
--load 3 \
--num_train 210 \
--num_validation 30 \
--num_test 60 \
--num_labels 3 \
--data_length 1024 \
--window 512 \
--max_epochs 500 \
--batch_size 256 \
--lr 1e-2 \
--normalization '0-1' \
--tune_max_epochs 100 \
--backbone_lr 5e-3 \
--classifier_lr 5e-3 \