Skip to content

Commit

Permalink
读取修复 -> 读修复
Browse files Browse the repository at this point in the history
  • Loading branch information
yjhmelody committed Aug 27, 2018
1 parent b16a60d commit c7bdd81
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
6 changes: 3 additions & 3 deletions ch5.md
Original file line number Diff line number Diff line change
Expand Up @@ -489,7 +489,7 @@

![](img/fig5-10.png)

**图5-10 仲裁写入,法定读取,并在节点中断后读取修复**
**图5-10 仲裁写入,法定读取,并在节点中断后读修复**

​ 现在想象一下,不可用的节点重新联机,客户端开始读取它。节点关闭时发生的任何写入都从该节点丢失。因此,如果您从该节点读取数据,则可能会将陈旧(过时)值视为响应。

Expand All @@ -509,7 +509,7 @@

​ 此外,一些数据存储具有后台进程,该进程不断查找副本之间的数据差异,并将任何缺少的数据从一个副本复制到另一个副本。与基于领导者的复制中的复制日志不同,此反熵过程不会以任何特定的顺序复制写入,并且在复制数据之前可能会有显着的延迟。

​ 并不是所有的系统都实现了这两个;例如,Voldemort目前没有反熵过程。请注意,如果没有反熵过程,某些副本中很少读取的值可能会丢失,从而降低了持久性,因为只有在应用程序读取值时才执行读取修复
​ 并不是所有的系统都实现了这两个;例如,Voldemort目前没有反熵过程。请注意,如果没有反熵过程,某些副本中很少读取的值可能会丢失,从而降低了持久性,因为只有在应用程序读取值时才执行读修复

#### 读写的法定人数

Expand Down Expand Up @@ -571,7 +571,7 @@

​ 对于基于领导者的复制,数据库通常会公开复制滞后的度量标准,您可以将其提供给监视系统。这是可能的,因为写入按照相同的顺序应用于领导者和追随者,并且每个节点在复制日志中具有一个位置(在本地应用的写入次数)。通过从领导者的当前位置中减去随从者的当前位置,您可以测量复制滞后量。

​ 然而,在无领导者复制的系统中,没有固定的写入顺序,这使得监控变得更加困难。而且,如果数据库只使用读取修复(没有反熵过程),那么对于一个值可能会有多大的限制是没有限制的 - 如果一个值很少被读取,那么由一个陈旧副本返回的值可能是古老的。
​ 然而,在无领导者复制的系统中,没有固定的写入顺序,这使得监控变得更加困难。而且,如果数据库只使用读修复(没有反熵过程),那么对于一个值可能会有多大的限制是没有限制的 - 如果一个值很少被读取,那么由一个陈旧副本返回的值可能是古老的。

​ 已经有一些关于衡量无主复制数据库中的复制陈旧度的研究,并根据参数n,w和r来预测陈旧读取的预期百分比【48】。不幸的是,这还不是很常见的做法,但是将过时测量值包含在数据库的标准度量标准中是一件好事。最终的一致性是故意模糊的保证,但是对于可操作性来说,能够量化“最终”是很重要的。

Expand Down
2 changes: 1 addition & 1 deletion ch9.md
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,7 @@

​ 仲裁条件满足( $w + r> n$ ),但是这个执行是非线性一致的:B的请求在A的请求完成后开始,但是B返回旧值,而A返回新值。 (又一次,如同Alice和Bob的例子 [图9-1]()

​ 有趣的是,通过牺牲性能,可以使Dynamo风格的法定人数线性化:读取者必须在将结果返回给应用之前,同步执行读取修复(参阅“[读时修复与反熵过程](ch5.md#读时修复与反熵过程)”) ,并且写入者必须在发送写入之前,读取法定数量节点的最新状态【24,25】。然而,由于性能损失,Riak不执行同步读取修复【26】。 Cassandra在进行法定人数读取时,**确实**在等待读取修复完成【27】;但是由于使用了最后写入为准的冲突解决方案,当同一个键有多个并发写入时,将不能保证线性一致性。
​ 有趣的是,通过牺牲性能,可以使Dynamo风格的法定人数线性化:读取者必须在将结果返回给应用之前,同步执行读修复(参阅“[读时修复与反熵过程](ch5.md#读时修复与反熵过程)”) ,并且写入者必须在发送写入之前,读取法定数量节点的最新状态【24,25】。然而,由于性能损失,Riak不执行同步读修复【26】。 Cassandra在进行法定人数读取时,**确实**在等待读修复完成【27】;但是由于使用了最后写入为准的冲突解决方案,当同一个键有多个并发写入时,将不能保证线性一致性。

​ 而且,这种方式只能实现线性一致的读写;不能实现线性一致的比较和设置操作,因为它需要一个共识算法【28】。

Expand Down

0 comments on commit c7bdd81

Please sign in to comment.