Create conda environment:
conda env create -f env.yaml
Activate the environment:
conda activate decoding
Run the following to preprocess and cache IBL datasets:
python src/0_data_caching.py --datasets reproducible-ephys --n_sessions 10 --base_path XXX
We provide example scripts to run the following models:
- single-session linear / reduced-rank / MLP / LSTM model:
python src/1_decode_single_session.py --eid 5dcee0eb-b34d-4652-acc3-d10afc6eae68 --target choice --method linear --region all --base_path XXX
- multi-session reduced-rank model:
python src/2_decode_multi_session.py --target choice --region all --base_path XXX
- multi-region reduced-rank model:
python src/3_decode_multi_region.py --target choice --query_region CA1 LP PO --base_path XXX
We provide example notebooks to run the following models:
- single-session / oracle / multi-session BMM-HMM (
notebooks/BMM-HMM-example.ipynb
) - single-session / oracle / multi-session LG-AR1 (
notebooks/LG-AR1-example.ipynb
)