Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

removing specified bounds for brents #43

Merged
merged 7 commits into from
Nov 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion autodp/autodp_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,6 @@ def approx_dp_func(delta1):
elif type_of_update == 'RDP':
# function output RDP eps as a function of alpha
self.RenyiDP = converter.pointwise_minimum(self.RenyiDP, func)
self.approx_delta = converter.pointwise_minimum(self.approx_delta, converter.rdp_to_delta(self.RenyiDP))
if fDP_based_conversion:

fdp_log, fdp_grad_log = converter.rdp_to_fdp_and_fdp_grad_log(func)
Expand Down Expand Up @@ -234,12 +233,16 @@ def approx_dp_func(delta1):
converter.fdp_fdp_grad_to_approxdp(
fdp_log, fdp_grad_log,
log_flag=True))
self.approx_delta = converter.pointwise_minimum(self.approx_delta,
converter.rdp_to_delta(self.RenyiDP, BBGHS_conversion=BBGHS_conversion))

# self.approxDP = converter.pointwise_minimum(self.approxDP,
# converter.fdp_to_approxdp(self.fDP))
else:
self.approxDP = converter.pointwise_minimum(self.approxDP,
converter.rdp_to_approxdp(self.RenyiDP, BBGHS_conversion=BBGHS_conversion))
self.approx_delta = converter.pointwise_minimum(self.approx_delta,
converter.rdp_to_delta(self.RenyiDP, BBGHS_conversion=BBGHS_conversion))
self.fDP = converter.pointwise_maximum(self.fDP,
converter.approxdp_func_to_fdp(
self.approxDP))
Expand Down
102 changes: 59 additions & 43 deletions autodp/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def approxdp(delta):
return approxdp


def rdp_to_delta(rdp):
def rdp_to_delta(rdp, BBGHS_conversion=True):
"""
from RDP to delta with a fixed epsilon
"""
Expand All @@ -70,48 +70,64 @@ def approx_delta(eps, naive=False):
"""
approximate delta as a function of epsilon
"""

def get_eps(delta):
if delta == 0:
return rdp(np.inf)
def get_delta(alpha):
if BBGHS_conversion:
# Also by Canonne et al., 2020
return np.minimum(
(np.exp((alpha-1)*(rdp(alpha)-eps))/alpha)*((1-1/alpha)**(alpha-1)), 1.0)
else:
def fun(x): # the input the RDP's \alpha
if x <= 1:
return np.inf
else:

if naive:
return np.log(1 / delta) / (x - 1) + rdp(x)
bbghs = np.maximum(rdp(x) + np.log((x-1)/x)
- (np.log(delta) + np.log(x))/(x-1), 0)
"""
The following is for optimal conversion
1/(alpha -1 )log(e^{(alpha-1)*rdp -1}/(alpha*delta) +1 )
"""
sign, term_1= utils.stable_log_diff_exp((x-1)*rdp(x),0)
result = utils.stable_logsumexp_two(term_1 - np.log(x)- np.log(delta),0)
return min(result*1.0/(x - 1), bbghs)

results = minimize_scalar(fun, method='Brent', bracket=(1, 2), bounds=[1, 100000])
if results.success:
# print('delta', delta,'eps under rdp', results.fun)
return results.fun
else:
return np.inf
# Naive conversion from Mironov
return np.minimum(np.exp((alpha-1)*(rdp(alpha)-eps)),1.0)


def err(delta):
current_eps = get_eps(delta)
#print('current delta', delta, 'eps', current_eps)
return abs(eps - current_eps)

results = minimize_scalar(err, method='bounded', bounds=[0, 0.1],options={'xatol':1e-14})
results = minimize_scalar(get_delta, method = 'Brent', bracket=(1,2))
if results.success:
#print('results', results.x)
return results.x
# print('delta', delta,'eps under rdp', results.fun)
return results.fun
else:
print('not found')
return 1
return 1.0

# def get_eps(delta):
# if delta == 0:
# return rdp(np.inf)
# else:
# def fun(x): # the input the RDP's \alpha
# if x <= 1:
# return np.inf
# else:
#
# if naive:
# return np.log(1 / delta) / (x - 1) + rdp(x)
# bbghs = np.maximum(rdp(x) + np.log((x-1)/x)
# - (np.log(delta) + np.log(x))/(x-1), 0)
# """
# The following is for optimal conversion
# 1/(alpha -1 )log(e^{(alpha-1)*rdp -1}/(alpha*delta) +1 )
# """
# sign, term_1= utils.stable_log_diff_exp((x-1)*rdp(x),0)
# result = utils.stable_logsumexp_two(term_1 - np.log(x)- np.log(delta),0)
# return min(result*1.0/(x - 1), bbghs)
#
# results = minimize_scalar(fun, method='Brent', bracket=(1, 2))#, bounds=[1, 100000])
# if results.success:
# # print('delta', delta,'eps under rdp', results.fun)
# return results.fun
# else:
# return np.inf
#
#
# def err(delta):
# current_eps = get_eps(delta)
# #print('current delta', delta, 'eps', current_eps)
# return abs(eps - current_eps)
#
# results = minimize_scalar(err, method='bounded', bounds=[0, 0.1],options={'xatol':1e-14})
# if results.success:
# #print('results', results.x)
# return results.x
# else:
# print('not found')
# return 1


return approx_delta
Expand Down Expand Up @@ -146,7 +162,7 @@ def fun(x): # the input the RDP's \alpha
else:
return np.log(1 / delta) / (x - 1) + rdp(x)

results = minimize_scalar(fun, method='Brent', bracket=(1,2), bounds=[1, alpha_max])
results = minimize_scalar(fun, method='Brent', bracket=(1,2))#, bounds=[1, alpha_max])
if results.success:
return results.fun
else:
Expand Down Expand Up @@ -244,13 +260,13 @@ def fdp(x):

def fun(alpha):
if alpha < 0.5:
return np.inf
return 0
else:
single_fdp = single_rdp_to_fdp(alpha, rdp(alpha))
return -single_fdp(x)

# This will use brent to start with 1,2.
results = minimize_scalar(fun, bracket=(0.5, 2), bounds=(0.5, alpha_max))
results = minimize_scalar(fun, bracket=(0.5, 2))#, bounds=(0.5, alpha_max))
if results.success:
return -results.fun
else:
Expand Down Expand Up @@ -527,7 +543,7 @@ def fun(alpha):
return log_one_minus_fdp_alpha(logx)

# This will use brent to start with 1,2.
results = minimize_scalar(fun, bracket=(0.5, 2), bounds=(0.5, alpha_max))
results = minimize_scalar(fun, bracket=(0.5, 2))#, bounds=(0.5, alpha_max))
if results.success:
return [results.fun, results.x]
else:
Expand Down Expand Up @@ -720,7 +736,7 @@ def normal_equation_loglogx(loglogx):
bound1 = np.log(-tmp - tmp**2 / 2 - tmp**3 / 6)
else:
bound1 = np.log(1-np.exp(fun1(np.log(1-delta))))
#results = minimize_scalar(normal_equation, bounds=[-np.inf,0], bracket=[-1,-2])
#results = minimize_scalar(normal_equation, bracket=[-1,-2])
results = minimize_scalar(normal_equation, method="Bounded", bounds=[bound1,0],
options={'xatol': 1e-10, 'maxiter': 500, 'disp': 0})
if results.success:
Expand Down
2 changes: 1 addition & 1 deletion autodp/dp_bank.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ def fun(x):
else:
raise RuntimeError(f"Failed to find epsilon: {results.flag}")

def eps_generalized_gaussian(x, sigma, delta,k, c, c_tilde):
def get_eps_gaussian_svt(x, sigma, delta, k, c, c_tilde):
"""
submodule for generalized SVT with Gaussian noise
we want to partition c into [c/c'] parts, each part using (k choose c')
Expand Down
2 changes: 1 addition & 1 deletion autodp/mechanism_zoo.py
Original file line number Diff line number Diff line change
Expand Up @@ -431,7 +431,7 @@ def __init__(self, params=None,approxDP_off=False, name='StageWiseMechanism'):
self.delta0 = 0

if not approxDP_off: # Direct implementation of approxDP
new_approxdp = lambda x: dp_bank.get_generalized_gaussian(params, x)
new_approxdp = lambda x: dp_bank.get_eps_gaussian_svt(params, x)
self.propagate_updates(new_approxdp, 'approxDP_func')


Expand Down
6 changes: 3 additions & 3 deletions example/example_amplification_by_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,9 @@


# Now let's do subsampling. First we need to use replace-one version of the base mechanisms.
gm1.replace_one = True
gm2.replace_one = True
SVT.replace_one = True
gm1.neighboring = "replace_one"
gm2.neighboring = "replace_one"
SVT.neighboring = "replace_one"

composed_subsampled_mech = compose([subsample(gm1,prob),
subsample(gm2,prob),
Expand Down
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,14 @@ def _parse_requirements(path):

setup(
name='autodp',
version='0.2.1b',
version='0.2.3',
description='Automating Differential Privacy Computation',
license="Apache",
long_description="The package helps researchers and developers to correctly use advanced methods in differential privacy and obtain provable DP guarantees. The core of the package is an analytical moments accountant that keeps track of Renyi Differential Privacy in analytical forms.",
author='Yu-Xiang Wang',
author_email='[email protected]',
url='https://github.com/yuxiangw/autodp',
download_url = 'https://github.com/yuxiangw/autodp/archive/refs/tags/v0.2.1b.tar.gz',
download_url = 'https://github.com/yuxiangw/autodp/archive/refs/tags/v0.2.3.tar.gz',
keywords = ['Differential Privacy','Moments Accountant','Renyi Differential Privacy'],
packages=['autodp'], #same as name
install_requires=[_parse_requirements('requirements.txt')], #external packages as dependencies
Expand Down
10 changes: 5 additions & 5 deletions tutorials/tutorial_PATE_with_autoDP.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -54,15 +54,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
"2.2540846502197414 1e-06\n",
"2.2540846502197396 1e-06\n",
"4.886554117462211 1e-06\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.8/site-packages/scipy/optimize/optimize.py:2555: RuntimeWarning: invalid value encountered in double_scalars\n",
"/usr/local/lib/python3.8/site-packages/scipy/optimize/_optimize.py:2884: RuntimeWarning: invalid value encountered in scalar divide\n",
" w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom\n"
]
}
Expand Down Expand Up @@ -111,8 +111,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"PATE_eps=2 {'sigma': 22.30476293897311} 1.999999977711552\n",
"PATE_eps=0.5 {'sigma': 80.57618519751232} 0.49999999740790046\n"
"PATE_eps=2 {'sigma': 22.304762938973138} 1.9999999777115467\n",
"PATE_eps=0.5 {'sigma': 80.57618519751239} 0.49999999740789647\n"
]
}
],
Expand Down Expand Up @@ -177,7 +177,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.8.16"
}
},
"nbformat": 4,
Expand Down
8 changes: 4 additions & 4 deletions tutorials/tutorial_calibrator.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"GM {'sigma': 36.304688756269286} 0.10000000492560832\n",
"Ana_GM {'sigma': 36.304691899114694} 0.09999999565548537\n"
"GM {'sigma': 36.30468875626822} 0.10000000492561108\n",
"Ana_GM {'sigma': 36.304691899114694} 0.09999999565548348\n"
]
}
],
Expand Down Expand Up @@ -80,7 +80,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.8/site-packages/scipy/optimize/optimize.py:2555: RuntimeWarning: invalid value encountered in double_scalars\n",
"/usr/local/lib/python3.8/site-packages/scipy/optimize/_optimize.py:2884: RuntimeWarning: invalid value encountered in scalar divide\n",
" w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom\n"
]
}
Expand Down Expand Up @@ -307,7 +307,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.8.16"
}
},
"nbformat": 4,
Expand Down
2 changes: 1 addition & 1 deletion tutorials/tutorial_fdp_of_basic_mechanisms.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.8.16"
}
},
"nbformat": 4,
Expand Down
Loading
Loading