Skip to content

This library is designed to generate visualizations of neural networks by analyzing PyTorch code. Unlike conventional methods, our approach eliminates the need for large parameter files (pth) or specific input formats. With minimal AI knowledge, users can leverage this tool to create visualizations that aid in understanding complex networks.

License

Notifications You must be signed in to change notification settings

yilin-bao/nnanim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Nnanim: A PyTorch Neural Network Visualizer

Build Status License

Logo

Overview

This library is designed to generate visualizations of neural networks by analyzing PyTorch code. Unlike conventional methods, our approach eliminates the need for large parameter files (pth) or specific input formats. With minimal AI knowledge, users can leverage this tool to create visualizations that aid in understanding complex networks, including support for transformers and attention mechanisms.

Installation

Ensure you have Python and PyTorch installed. Install the library using the following command:

Usage

To generate visualizations, simply provide PyTorch code as input. The library will analyze the code and create visual representations of the neural network. No need for large parameter files or intricate input formats.

import numpy as np
import nnanim.analyzer
from TestingCode import vit
from TestingCode import modules

la = nnanim.analyzer.ModuleAnalyzer()
la.start_analyze_module(modules.Attention(dim=2*768))

For the example TestingCode, we are using a code base of vit: https://github.com/gupta-abhay/pytorch-vit/tree/main.

['self', 'embedding_layer', 'embedding_layer.projection', 'embedding_layer.projection.0', 'embedding_layer.projection.1', 'embedding_layer.projection.2', 'embedding_layer.projection.3', 'transformer', 'transformer.layers', 'transformer.layers.0', 'transformer.layers.0.0', 'transformer.layers.0.0.norm', 'transformer.layers.0.0.fn', 'transformer.layers.0.0.fn.qkv', 'transformer.layers.0.0.fn.attn_drop', 'transformer.layers.0.0.fn.proj', 'transformer.layers.0.0.fn.proj_drop', 'transformer.layers.0.1', 'transformer.layers.0.1.norm', 'transformer.layers.0.1.fn', 'transformer.layers.0.1.fn.net', 'transformer.layers.0.1.fn.net.0', 'transformer.layers.0.1.fn.net.1', 'transformer.layers.0.1.fn.net.2', 'transformer.layers.0.1.fn.net.3', 'transformer.layers.1', 'transformer.layers.1.0', 'transformer.layers.1.0.norm', 'transformer.layers.1.0.fn', 'transformer.layers.1.0.fn.qkv', 'transformer.layers.1.0.fn.attn_drop', 'transformer.layers.1.0.fn.proj', 'transformer.layers.1.0.fn.proj_drop', 'transformer.layers.1.1', 'transformer.layers.1.1.norm', 'transformer.layers.1.1.fn', 'transformer.layers.1.1.fn.net', 'transformer.layers.1.1.fn.net.0', 'transformer.layers.1.1.fn.net.1', 'transformer.layers.1.1.fn.net.2', 'transformer.layers.1.1.fn.net.3', 'transformer.layers.2', 'transformer.layers.2.0', 'transformer.layers.2.0.norm', 'transformer.layers.2.0.fn', 'transformer.layers.2.0.fn.qkv', 'transformer.layers.2.0.fn.attn_drop', 'transformer.layers.2.0.fn.proj', 'transformer.layers.2.0.fn.proj_drop', 'transformer.layers.2.1', 'transformer.layers.2.1.norm', 'transformer.layers.2.1.fn', 'transformer.layers.2.1.fn.net', 'transformer.layers.2.1.fn.net.0', 'transformer.layers.2.1.fn.net.1', 'transformer.layers.2.1.fn.net.2', 'transformer.layers.2.1.fn.net.3', 'transformer.layers.3', 'transformer.layers.3.0', 'transformer.layers.3.0.norm', 'transformer.layers.3.0.fn', 'transformer.layers.3.0.fn.qkv', 'transformer.layers.3.0.fn.attn_drop', 'transformer.layers.3.0.fn.proj', 'transformer.layers.3.0.fn.proj_drop', 'transformer.layers.3.1', 'transformer.layers.3.1.norm', 'transformer.layers.3.1.fn', 'transformer.layers.3.1.fn.net', 'transformer.layers.3.1.fn.net.0', 'transformer.layers.3.1.fn.net.1', 'transformer.layers.3.1.fn.net.2', 'transformer.layers.3.1.fn.net.3', 'transformer.layers.4', 'transformer.layers.4.0', 'transformer.layers.4.0.norm', 'transformer.layers.4.0.fn', 'transformer.layers.4.0.fn.qkv', 'transformer.layers.4.0.fn.attn_drop', 'transformer.layers.4.0.fn.proj', 'transformer.layers.4.0.fn.proj_drop', 'transformer.layers.4.1', 'transformer.layers.4.1.norm', 'transformer.layers.4.1.fn', 'transformer.layers.4.1.fn.net', 'transformer.layers.4.1.fn.net.0', 'transformer.layers.4.1.fn.net.1', 'transformer.layers.4.1.fn.net.2', 'transformer.layers.4.1.fn.net.3', 'transformer.layers.5', 'transformer.layers.5.0', 'transformer.layers.5.0.norm', 'transformer.layers.5.0.fn', 'transformer.layers.5.0.fn.qkv', 'transformer.layers.5.0.fn.attn_drop', 'transformer.layers.5.0.fn.proj', 'transformer.layers.5.0.fn.proj_drop', 'transformer.layers.5.1', 'transformer.layers.5.1.norm', 'transformer.layers.5.1.fn', 'transformer.layers.5.1.fn.net', 'transformer.layers.5.1.fn.net.0', 'transformer.layers.5.1.fn.net.1', 'transformer.layers.5.1.fn.net.2', 'transformer.layers.5.1.fn.net.3', 'transformer.layers.6', 'transformer.layers.6.0', 'transformer.layers.6.0.norm', 'transformer.layers.6.0.fn', 'transformer.layers.6.0.fn.qkv', 'transformer.layers.6.0.fn.attn_drop', 'transformer.layers.6.0.fn.proj', 'transformer.layers.6.0.fn.proj_drop', 'transformer.layers.6.1', 'transformer.layers.6.1.norm', 'transformer.layers.6.1.fn', 'transformer.layers.6.1.fn.net', 'transformer.layers.6.1.fn.net.0', 'transformer.layers.6.1.fn.net.1', 'transformer.layers.6.1.fn.net.2', 'transformer.layers.6.1.fn.net.3', 'transformer.layers.7', 'transformer.layers.7.0', 'transformer.layers.7.0.norm', 'transformer.layers.7.0.fn', 'transformer.layers.7.0.fn.qkv', 'transformer.layers.7.0.fn.attn_drop', 'transformer.layers.7.0.fn.proj', 'transformer.layers.7.0.fn.proj_drop', 'transformer.layers.7.1', 'transformer.layers.7.1.norm', 'transformer.layers.7.1.fn', 'transformer.layers.7.1.fn.net', 'transformer.layers.7.1.fn.net.0', 'transformer.layers.7.1.fn.net.1', 'transformer.layers.7.1.fn.net.2', 'transformer.layers.7.1.fn.net.3', 'transformer.layers.8', 'transformer.layers.8.0', 'transformer.layers.8.0.norm', 'transformer.layers.8.0.fn', 'transformer.layers.8.0.fn.qkv', 'transformer.layers.8.0.fn.attn_drop', 'transformer.layers.8.0.fn.proj', 'transformer.layers.8.0.fn.proj_drop', 'transformer.layers.8.1', 'transformer.layers.8.1.norm', 'transformer.layers.8.1.fn', 'transformer.layers.8.1.fn.net', 'transformer.layers.8.1.fn.net.0', 'transformer.layers.8.1.fn.net.1', 'transformer.layers.8.1.fn.net.2', 'transformer.layers.8.1.fn.net.3', 'transformer.layers.9', 'transformer.layers.9.0', 'transformer.layers.9.0.norm', 'transformer.layers.9.0.fn', 'transformer.layers.9.0.fn.qkv', 'transformer.layers.9.0.fn.attn_drop', 'transformer.layers.9.0.fn.proj', 'transformer.layers.9.0.fn.proj_drop', 'transformer.layers.9.1', 'transformer.layers.9.1.norm', 'transformer.layers.9.1.fn', 'transformer.layers.9.1.fn.net', 'transformer.layers.9.1.fn.net.0', 'transformer.layers.9.1.fn.net.1', 'transformer.layers.9.1.fn.net.2', 'transformer.layers.9.1.fn.net.3', 'transformer.layers.10', 'transformer.layers.10.0', 'transformer.layers.10.0.norm', 'transformer.layers.10.0.fn', 'transformer.layers.10.0.fn.qkv', 'transformer.layers.10.0.fn.attn_drop', 'transformer.layers.10.0.fn.proj', 'transformer.layers.10.0.fn.proj_drop', 'transformer.layers.10.1', 'transformer.layers.10.1.norm', 'transformer.layers.10.1.fn', 'transformer.layers.10.1.fn.net', 'transformer.layers.10.1.fn.net.0', 'transformer.layers.10.1.fn.net.1', 'transformer.layers.10.1.fn.net.2', 'transformer.layers.10.1.fn.net.3', 'transformer.layers.11', 'transformer.layers.11.0', 'transformer.layers.11.0.norm', 'transformer.layers.11.0.fn', 'transformer.layers.11.0.fn.qkv', 'transformer.layers.11.0.fn.attn_drop', 'transformer.layers.11.0.fn.proj', 'transformer.layers.11.0.fn.proj_drop', 'transformer.layers.11.1', 'transformer.layers.11.1.norm', 'transformer.layers.11.1.fn', 'transformer.layers.11.1.fn.net', 'transformer.layers.11.1.fn.net.0', 'transformer.layers.11.1.fn.net.1', 'transformer.layers.11.1.fn.net.2', 'transformer.layers.11.1.fn.net.3', 'post_transformer_ln', 'cls_layer', 'cls_layer.net', 'cls_layer.net.0']
[<ast.Assign object at 0x12eca4a30>, <ast.Call object at 0x12eca5960>, <ast.Attribute object at 0x12eca6fb0>] x x = x.permute(0, 2, 1)
 self.net
['x']
[<ast.Assign object at 0x12eca5240>, <ast.Call object at 0x12eca6d10>] x x = self.net(x)
 [<ast.Assign object at 0x12eca6860>, <ast.Call object at 0x12eca5d80>, <ast.Attribute object at 0x12eca7f40>] x x = x.permute(0, 2, 1)
 self.net
['x']
[<ast.Assign object at 0x12eca7b50>, <ast.Call object at 0x12eca6bc0>] x x = self.net(x)
 self.layer_flag transformer.layers.11
[<ast.Call object at 0x12ea8ebf0>, <ast.Call object at 0x12ea8eda0>] x self.fn(self.norm(x), **kwargs)
 self.layer_flag None
[<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5c60>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 [<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5c60>, <ast.BinOp object at 0x12eca7be0>, <ast.Call object at 0x12eca48e0>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 [<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5c60>, <ast.BinOp object at 0x12eca7be0>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 [<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5930>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 [<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5930>, <ast.BinOp object at 0x12eca6620>, <ast.Call object at 0x12eca75b0>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 [<ast.For object at 0x12eca70d0>, <ast.Assign object at 0x12eca5930>, <ast.BinOp object at 0x12eca6620>] x for attn, ff in self.layers:
    x = attn(x) + x
    x = ff(x) + x
 ------------------------------------------------------------
We have find a layer post_transformer_ln, which is an instance of VisionTransformer.LayerNorm
The weight tensor for this layer is torch.Size([1536])
The bias vector for this layer is torch.Size([1536])
------------------------------------------------------------
We have find a layer cls_layer, which is an instance of VisionTransformer.OutputLayer
------------------------------------------------------------
We have find a layer cls_layer.net, which is an instance of OutputLayer.Sequential
------------------------------------------------------------
We have find a layer cls_layer.net.0, which is an instance of Sequential.Linear
The weight tensor for this layer is torch.Size([1000, 1536])
The bias vector for this layer is torch.Size([1000])
self.layer_flag None
self.to_cls_token
[]
[<ast.Assign object at 0x12eca50c0>, <ast.Call object at 0x12eca5ba0>] x x = self.to_cls_token(x[:, 0])
 torch.mean
['x']
[<ast.Assign object at 0x12eca4a30>, <ast.Call object at 0x12eca5780>] x x = torch.mean(x, dim=1)
 [<ast.Call object at 0x12eca60b0>] x self.net(x)
 self.layer_flag None
self.embedding_layer
['x']
[<ast.Assign object at 0x12eca7e80>, <ast.Call object at 0x12eca6c20>] x x = self.embedding_layer(x)
 self.transformer
['x']
[<ast.Assign object at 0x12eca5a20>, <ast.Call object at 0x12eca7910>] x x = self.transformer(x)
 self.post_transformer_ln
['x']
[<ast.Assign object at 0x12eca6830>, <ast.Call object at 0x12eca5390>] x x = self.post_transformer_ln(x)
 self.cls_layer
['x']
[<ast.Assign object at 0x12eca79d0>, <ast.Call object at 0x12eca48b0>] x x = self.cls_layer(x)

Documentation

Contribution Guidelines

Contribute to the project by reporting issues or submitting code improvements. Follow the guidelines for raising issues, creating branches, and submitting pull requests.

Version History

View the project's version history on the GitHub Releases page.

License

This project is licensed under the MIT License. Refer to the LICENSE file for more information.

Project Status

Community and Contact

Contact us via email at [[email protected]].

Screenshots or Demos

Alt text

Related Projects

Frequently Asked Questions (FAQ)

Address common questions users might have about the library and its usage.

Acknowledgments

Express gratitude to contributors or projects that have influenced or assisted in the development of this library.


Replace placeholders like `user/repo`, `your-documentation-link.com`, `your-library`, and others with your actual information. Customize this template based on the specific details and requirements of your project.

About

This library is designed to generate visualizations of neural networks by analyzing PyTorch code. Unlike conventional methods, our approach eliminates the need for large parameter files (pth) or specific input formats. With minimal AI knowledge, users can leverage this tool to create visualizations that aid in understanding complex networks.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages