Skip to content

xuzf-git/entity-diambiguation-luke

 
 

Repository files navigation

Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities

This directory contains the source code for our paper Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities.

The proposed model addresses entity disambiguation based on LUKE using local (word-based) and global (entity-based) contextual information. The model is fine-tuned by predicting randomly masked entities in Wikipedia. This model achieves state-of-the-art results on five standard entity disambiguation datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI.

Reproducing Experiments

  • Model checkpoint file: Link
  • Dataset: Link

Zero-shot evaluation of the trained model:

$ python -m examples.cli \
    --model-file=luke_large_ed.tar.gz
    --output-dir=<OUTPUT_DIR> \
    entity-disambiguation run
    --data-dir=<DATA_DIR>
    --no-train \
    --do-eval

Fine-tuning the model using the CoNLL dataset:

$ python -m examples.cli \
    --model-file=luke_large_ed.tar.gz \
    entity-disambiguation run \
    --data-dir=data/entity_disambiguation \
    --learning-rate=2e-5 \
    --adam-b2=0.999 \
    --max-grad-norm=1.0 \
    --warmup-proportion=0.1 \
    --train-batch-size=2 \
    --gradient-accumulation-steps=8 \
    --do-train \
    --do-eval

Citation

If you find this work useful, please cite our paper:

@article{yamada2019global,
  title={Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities},
  author={Ikuya Yamada and Koki Washio and Hiroyuki Shindo and Yuji Matsumoto},
  journal={arXiv preprint arXiv:1909.00426},
  year={2019}
}

About

entity disambiguation with studio-ousia/luke

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%