This directory contains the source code for our paper Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities.
The proposed model addresses entity disambiguation based on LUKE using local (word-based) and global (entity-based) contextual information. The model is fine-tuned by predicting randomly masked entities in Wikipedia. This model achieves state-of-the-art results on five standard entity disambiguation datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI.
Zero-shot evaluation of the trained model:
$ python -m examples.cli \
--model-file=luke_large_ed.tar.gz
--output-dir=<OUTPUT_DIR> \
entity-disambiguation run
--data-dir=<DATA_DIR>
--no-train \
--do-eval
Fine-tuning the model using the CoNLL dataset:
$ python -m examples.cli \
--model-file=luke_large_ed.tar.gz \
entity-disambiguation run \
--data-dir=data/entity_disambiguation \
--learning-rate=2e-5 \
--adam-b2=0.999 \
--max-grad-norm=1.0 \
--warmup-proportion=0.1 \
--train-batch-size=2 \
--gradient-accumulation-steps=8 \
--do-train \
--do-eval
If you find this work useful, please cite our paper:
@article{yamada2019global,
title={Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities},
author={Ikuya Yamada and Koki Washio and Hiroyuki Shindo and Yuji Matsumoto},
journal={arXiv preprint arXiv:1909.00426},
year={2019}
}