Skip to content
forked from BerriAI/litellm

Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)

License

Notifications You must be signed in to change notification settings

xunx911/litellm

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš… LiteLLM

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, etc.]

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router

Jump to OpenAI Proxy Docs
Jump to Supported LLM Providers

Usage (Docs)

Important

LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="gpt-3.5-turbo", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Langfuse, DynamoDB, s3 Buckets, LLMonitor, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor"] # log input/output to langfuse, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi πŸ‘‹ - i'm openai"}])

OpenAI Proxy - (Docs)

Track spend across multiple projects/people

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

πŸ“– Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:8000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Track Spend, Set budgets and create virtual keys for the proxy POST /key/generate

Request

curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "[email protected]", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

[Beta] Proxy UI

A simple UI to add new models and let your users create keys.

Live here: https://dashboard.litellm.ai/

Code: https://github.com/BerriAI/litellm/tree/main/ui

Screenshot 2023-12-26 at 8 33 53 AM

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai βœ… βœ… βœ… βœ… βœ… βœ…
azure βœ… βœ… βœ… βœ… βœ… βœ…
aws - sagemaker βœ… βœ… βœ… βœ… βœ…
aws - bedrock βœ… βœ… βœ… βœ… βœ…
google - vertex_ai [Gemini] βœ… βœ… βœ… βœ…
google - palm βœ… βœ… βœ… βœ…
google AI Studio - gemini βœ… βœ…
mistral ai api βœ… βœ… βœ… βœ… βœ…
cloudflare AI Workers βœ… βœ… βœ… βœ…
cohere βœ… βœ… βœ… βœ… βœ…
anthropic βœ… βœ… βœ… βœ…
huggingface βœ… βœ… βœ… βœ… βœ…
replicate βœ… βœ… βœ… βœ…
together_ai βœ… βœ… βœ… βœ…
openrouter βœ… βœ… βœ… βœ…
ai21 βœ… βœ… βœ… βœ…
baseten βœ… βœ… βœ… βœ…
vllm βœ… βœ… βœ… βœ…
nlp_cloud βœ… βœ… βœ… βœ…
aleph alpha βœ… βœ… βœ… βœ…
petals βœ… βœ… βœ… βœ…
ollama βœ… βœ… βœ… βœ…
deepinfra βœ… βœ… βœ… βœ…
perplexity-ai βœ… βœ… βœ… βœ…
anyscale βœ… βœ… βœ… βœ…
voyage ai βœ…
xinference [Xorbits Inference] βœ…

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .

Step 4: Submit a PR with your changes! πŸš€

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors

About

Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • HTML 2.5%
  • Other 0.2%