Skip to content

ElasticFace Elastic Margin Loss for Deep Face Recognition

Notifications You must be signed in to change notification settings

xuanson97hg/ElasticFace

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the official repository of the paper:

ElasticFace: Elastic Margin Loss for Deep Face Recognition

Paper on arxiv: arxiv

evaluation

Model Log file Pretrained model
ElasticFace-Arc log file pretrained-mode
ElasticFace-Cos log file pretrained-mode
ElasticFace-Arc+ log file pretrained-mode
ElasticFace-Cos+ log file pretrained-mode

Evaluation result: See: Paper with code

Face recognition model training

Model training: In the paper, we employ MS1MV2 as the training dataset which can be downloaded from InsightFace (MS1M-ArcFace in DataZoo) Download MS1MV2 dataset from insightface on strictly follow the licence distribution

Unzip the dataset and place it in the data folder Set the config.output and config.loss in the config/config.py

All code has been trained and tested using Pytorch 1.7.1

Face recognition evaluation

evaluation on LFW, AgeDb-30, CPLFW, CALFW and CFP-FP:
  1. download the data from their offical webpages.
  2. alternative: The evaluation datasets are available in the training dataset package as bin file
  3. set the config.rec to dataset folder e.g. data/faces_emore
  4. set the config.val_targets for list of the evaluation dataset
  5. download the pretrained model from link the previous table
  6. set the config.output to path to pretrained model weights
  7. run eval/evaluation.py
  8. the output is test.log contains the evaluation results over all epochs

To-do

  • Add evaluation script

If you use any of the code provided in this repository, please cite the following paper:

Citation

@misc{boutros2021elasticface,
      title={ElasticFace: Elastic Margin Loss for Deep Face Recognition}, 
      author={Fadi Boutros and Naser Damer and Florian Kirchbuchner and Arjan Kuijper},
      year={2021},
      eprint={2109.09416},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}


License

This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 
International (CC BY-NC-SA 4.0) license. 
Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

About

ElasticFace Elastic Margin Loss for Deep Face Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%