forked from huggingface/alignment-handbook
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
384 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
|
||
# Instructions to train SmolLM-Instruct | ||
|
||
We build the [SmolLM-Instruct](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) (v0.2) models (135M, 360M and 1.7B) by doing SFT on a mix of these datasets: | ||
- a dataset of 2k simple everyday conversations we generated by llama3.1-70B [everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k/) | ||
- [Magpie-Pro-300K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered) | ||
- [StarCoder2-Self-OSS-Instruct](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k) | ||
- A small subset of [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) | ||
|
||
## Setup | ||
|
||
Follow the installation instructions in https://github.com/huggingface/alignment-handbook/tree/main?tab=readme-ov-file#installation-instructions | ||
|
||
## Training | ||
We train the models on 8 GPUs using the following command: | ||
|
||
```shell | ||
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml scripts/run_sft.py recipes/smollm/sft/config.yaml | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Model arguments | ||
model_name_or_path: HuggingFaceTB/SmolLM-360M | ||
model_revision: main | ||
tokenizer_name_or_path: HuggingFaceTB/SmolLM-360M-Instruct # Custom tokenizer with <|im_start|> and <|im_end|> tokens | ||
torch_dtype: bfloat16 | ||
use_flash_attention_2: true | ||
|
||
# Data training arguments | ||
dataset_mixer: | ||
HuggingFaceTB/Magpie-Pro-300K-Filtered-H4: 1.0 | ||
HuggingFaceTB/self-oss-instruct-sc2-H4: 1.0 | ||
HuggingFaceTB/OpenHermes-2.5-H4: 0.001 | ||
HuggingFaceTB/everyday-conversations-llama3.1-2k: 1.0 | ||
HuggingFaceTB/instruct-data-basics-smollm-H4: 1.0 | ||
|
||
dataset_splits: | ||
- train_sft | ||
- test_sft | ||
preprocessing_num_workers: 36 | ||
|
||
# SFT trainer config | ||
bf16: true | ||
dataset_kwargs: | ||
add_special_tokens: false # We already wrap <bos> and <eos> in the chat template | ||
append_concat_token: false # No need to add <eos> across samples | ||
do_eval: true | ||
evaluation_strategy: epoch | ||
gradient_accumulation_steps: 4 | ||
gradient_checkpointing: true | ||
gradient_checkpointing_kwargs: | ||
use_reentrant: false | ||
hub_model_id: smollm-360M-instruct-new | ||
hub_strategy: every_save | ||
learning_rate: 1.0e-03 # 3e-4 | ||
log_level: info | ||
logging_steps: 5 | ||
logging_strategy: steps | ||
lr_scheduler_type: cosine | ||
max_seq_length: 2048 | ||
max_steps: -1 | ||
num_train_epochs: 1 | ||
output_dir: data/smollm-360M-instruct-new | ||
overwrite_output_dir: true | ||
per_device_eval_batch_size: 4 | ||
per_device_train_batch_size: 4 | ||
push_to_hub: true | ||
remove_unused_columns: true | ||
report_to: | ||
- tensorboard | ||
- wandb | ||
save_strategy: "no" | ||
seed: 42 | ||
warmup_ratio: 0.1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import unittest | ||
from copy import deepcopy | ||
|
||
import pytest | ||
from datasets import Dataset | ||
from transformers import AutoTokenizer | ||
|
||
from alignment import ( | ||
DataArguments, | ||
ModelArguments, | ||
apply_chat_template, | ||
get_datasets, | ||
get_tokenizer, | ||
) | ||
from alignment.data import maybe_insert_system_message | ||
|
||
|
||
class GetDatasetsTest(unittest.TestCase): | ||
"""Each of these test datasets has 100 examples""" | ||
|
||
def test_loading_data_args(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 0.5, | ||
"HuggingFaceH4/testing_self_instruct_small": 0.3, | ||
"HuggingFaceH4/testing_codealpaca_small": 0.2, | ||
} | ||
data_args = DataArguments(dataset_mixer=dataset_mixer) | ||
datasets = get_datasets(data_args, columns_to_keep=["prompt", "completion"]) | ||
self.assertEqual(len(datasets["train"]), 100) | ||
self.assertEqual(len(datasets["test"]), 300) | ||
|
||
def test_loading_data_dict(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 0.5, | ||
"HuggingFaceH4/testing_self_instruct_small": 0.3, | ||
"HuggingFaceH4/testing_codealpaca_small": 0.2, | ||
} | ||
datasets = get_datasets(dataset_mixer, columns_to_keep=["prompt", "completion"]) | ||
self.assertEqual(len(datasets["train"]), 100) | ||
self.assertEqual(len(datasets["test"]), 300) | ||
|
||
def test_loading_with_unit_fractions(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 1.0, | ||
"HuggingFaceH4/testing_self_instruct_small": 1.0, | ||
"HuggingFaceH4/testing_codealpaca_small": 1.0, | ||
} | ||
datasets = get_datasets(dataset_mixer, columns_to_keep=["prompt", "completion"]) | ||
self.assertEqual(len(datasets["train"]), 300) | ||
self.assertEqual(len(datasets["test"]), 300) | ||
|
||
def test_loading_with_fractions_greater_than_unity(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 0.7, | ||
"HuggingFaceH4/testing_self_instruct_small": 0.4, | ||
} | ||
datasets = get_datasets(dataset_mixer, columns_to_keep=["prompt", "completion"]) | ||
self.assertEqual(len(datasets["train"]), 70 + 40) | ||
self.assertEqual(len(datasets["test"]), 200) | ||
|
||
def test_loading_fails_with_negative_fractions(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 0.7, | ||
"HuggingFaceH4/testing_self_instruct_small": -0.3, | ||
} | ||
with pytest.raises(ValueError, match=r"Dataset fractions cannot be negative."): | ||
get_datasets(dataset_mixer, columns_to_keep=["prompt", "completion"]) | ||
|
||
def test_loading_single_split_with_unit_fractions(self): | ||
dataset_mixer = { | ||
"HuggingFaceH4/testing_alpaca_small": 1.0, | ||
} | ||
datasets = get_datasets( | ||
dataset_mixer, splits=["test"], columns_to_keep=["prompt", "completion"] | ||
) | ||
self.assertEqual(len(datasets["test"]), 100) | ||
self.assertRaises(KeyError, lambda: datasets["train"]) | ||
|
||
|
||
class ApplyChatTemplateTest(unittest.TestCase): | ||
def setUp(self): | ||
model_args = ModelArguments(model_name_or_path="HuggingFaceH4/zephyr-7b-alpha") | ||
data_args = DataArguments() | ||
self.tokenizer = get_tokenizer(model_args, data_args) | ||
self.dataset = Dataset.from_dict( | ||
{ | ||
"prompt": ["Hello!"], | ||
"messages": [ | ||
[ | ||
{"role": "system", "content": "You are a happy chatbot"}, | ||
{"role": "user", "content": "Hello!"}, | ||
{"role": "assistant", "content": "Bonjour!"}, | ||
{"role": "user", "content": "How are you?"}, | ||
{"role": "assistant", "content": "I am doing well, thanks!"}, | ||
] | ||
], | ||
"chosen": [ | ||
[ | ||
{"role": "system", "content": "You are a happy chatbot"}, | ||
{"role": "user", "content": "Hello!"}, | ||
{"role": "assistant", "content": "Bonjour!"}, | ||
{"role": "user", "content": "How are you?"}, | ||
{"role": "assistant", "content": "I am doing well, thanks!"}, | ||
] | ||
], | ||
"rejected": [ | ||
[ | ||
{"role": "system", "content": "You are a happy chatbot"}, | ||
{"role": "user", "content": "Hello!"}, | ||
{"role": "assistant", "content": "Bonjour!"}, | ||
{"role": "user", "content": "How are you?"}, | ||
{"role": "assistant", "content": "Not so good tbh"}, | ||
] | ||
], | ||
} | ||
) | ||
|
||
def test_maybe_insert_system_message(self): | ||
# Chat template that does not accept system prompt. Use community checkpoint since it has no HF token requirement | ||
tokenizer_sys_excl = AutoTokenizer.from_pretrained( | ||
"mistral-community/Mistral-7B-Instruct-v0.3" | ||
) | ||
# Chat template that accepts system prompt | ||
tokenizer_sys_incl = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") | ||
messages_sys_excl = [{"role": "user", "content": "Tell me a joke."}] | ||
messages_sys_incl = [ | ||
{"role": "system", "content": ""}, | ||
{"role": "user", "content": "Tell me a joke."}, | ||
] | ||
|
||
messages_proc_excl = deepcopy(messages_sys_excl) | ||
message_proc_incl = deepcopy(messages_sys_excl) | ||
maybe_insert_system_message(messages_proc_excl, tokenizer_sys_excl) | ||
maybe_insert_system_message(message_proc_incl, tokenizer_sys_incl) | ||
|
||
# output from mistral should not have a system message, output from llama should | ||
self.assertEqual(messages_proc_excl, messages_sys_excl) | ||
self.assertEqual(message_proc_incl, messages_sys_incl) | ||
|
||
def test_sft(self): | ||
dataset = self.dataset.map( | ||
apply_chat_template, | ||
fn_kwargs={"tokenizer": self.tokenizer, "task": "sft"}, | ||
remove_columns=self.dataset.column_names, | ||
) | ||
self.assertDictEqual( | ||
dataset[0], | ||
{ | ||
"text": "<|system|>\nYou are a happy chatbot</s>\n<|user|>\nHello!</s>\n<|assistant|>\nBonjour!</s>\n<|user|>\nHow are you?</s>\n<|assistant|>\nI am doing well, thanks!</s>\n" | ||
}, | ||
) | ||
|
||
def test_generation(self): | ||
# Remove last turn from messages | ||
dataset = self.dataset.map(lambda x: {"messages": x["messages"][:-1]}) | ||
dataset = dataset.map( | ||
apply_chat_template, | ||
fn_kwargs={"tokenizer": self.tokenizer, "task": "generation"}, | ||
remove_columns=self.dataset.column_names, | ||
) | ||
self.assertDictEqual( | ||
dataset[0], | ||
{ | ||
"text": "<|system|>\nYou are a happy chatbot</s>\n<|user|>\nHello!</s>\n<|assistant|>\nBonjour!</s>\n<|user|>\nHow are you?</s>\n<|assistant|>\n" | ||
}, | ||
) | ||
|
||
def test_rm(self): | ||
dataset = self.dataset.map( | ||
apply_chat_template, | ||
fn_kwargs={"tokenizer": self.tokenizer, "task": "rm"}, | ||
remove_columns=self.dataset.column_names, | ||
) | ||
self.assertDictEqual( | ||
dataset[0], | ||
{ | ||
"text_chosen": "<|system|>\nYou are a happy chatbot</s>\n<|user|>\nHello!</s>\n<|assistant|>\nBonjour!</s>\n<|user|>\nHow are you?</s>\n<|assistant|>\nI am doing well, thanks!</s>\n", | ||
"text_rejected": "<|system|>\nYou are a happy chatbot</s>\n<|user|>\nHello!</s>\n<|assistant|>\nBonjour!</s>\n<|user|>\nHow are you?</s>\n<|assistant|>\nNot so good tbh</s>\n", | ||
}, | ||
) | ||
|
||
def test_dpo(self): | ||
dataset = self.dataset.map( | ||
apply_chat_template, | ||
fn_kwargs={"tokenizer": self.tokenizer, "task": "dpo"}, | ||
remove_columns=self.dataset.column_names, | ||
) | ||
self.assertDictEqual( | ||
dataset[0], | ||
{ | ||
"text_prompt": "<|system|>\nYou are a happy chatbot</s>\n<|user|>\nHello!</s>\n<|assistant|>\nBonjour!</s>\n<|user|>\nHow are you?</s>\n", | ||
"text_chosen": "<|assistant|>\nI am doing well, thanks!</s>\n", | ||
"text_rejected": "<|assistant|>\nNot so good tbh</s>\n", | ||
}, | ||
) |
Oops, something went wrong.