Skip to content

Commit

Permalink
Merge pull request #101 from wri/CIF-316-Add-bilinear-interpolation-f…
Browse files Browse the repository at this point in the history
…or-DEM-DSM-and-albedo-layers

Added resampling method for 3 layers and updated tests
  • Loading branch information
kcartier-wri authored Dec 23, 2024
2 parents feed9b6 + b8965b9 commit df3e021
Show file tree
Hide file tree
Showing 12 changed files with 111 additions and 23 deletions.
21 changes: 17 additions & 4 deletions city_metrix/layers/albedo.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import xarray
from dask.diagnostics import ProgressBar

from .layer import Layer, get_utm_zone_epsg, get_image_collection
from .layer import Layer, get_utm_zone_epsg, get_image_collection, set_resampling_for_continuous_raster


class Albedo(Layer):
Expand All @@ -11,17 +11,20 @@ class Albedo(Layer):
start_date: starting date for data retrieval
end_date: ending date for data retrieval
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
resampling_method: interpolation method used by Google Earth Engine. Default is 'bilinear'. All options are: ('bilinear', 'bicubic', None).
threshold: threshold value for filtering the retrieval
"""

def __init__(self, start_date="2021-01-01", end_date="2022-01-01", spatial_resolution=10, threshold=None, **kwargs):
def __init__(self, start_date="2021-01-01", end_date="2022-01-01", spatial_resolution:int=10,
resampling_method:str='bilinear', threshold=None, **kwargs):
super().__init__(**kwargs)
self.start_date = start_date
self.end_date = end_date
self.spatial_resolution = spatial_resolution
self.resampling_method = resampling_method
self.threshold = threshold

def get_data(self, bbox):
def get_data(self, bbox: tuple[float, float, float, float]):
S2 = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
S2C = ee.ImageCollection("COPERNICUS/S2_CLOUD_PROBABILITY")

Expand Down Expand Up @@ -118,7 +121,17 @@ def calc_s2_albedo(image):
## S2 MOSAIC AND ALBEDO
dataset = get_masked_s2_collection(ee.Geometry.BBox(*bbox), self.start_date, self.end_date)
s2_albedo = dataset.map(calc_s2_albedo)
albedo_mean = s2_albedo.reduce(ee.Reducer.mean())

albedo_mean = (s2_albedo
.map(lambda x:
set_resampling_for_continuous_raster(x,
self.resampling_method,
self.spatial_resolution,
bbox
)
)
.reduce(ee.Reducer.mean())
)

albedo_mean_ic = ee.ImageCollection(albedo_mean)
data = get_image_collection(
Expand Down
27 changes: 19 additions & 8 deletions city_metrix/layers/alos_dsm.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,27 +3,38 @@
import xarray as xr


from .layer import Layer, get_image_collection
from .layer import Layer, get_image_collection, set_resampling_for_continuous_raster


class AlosDSM(Layer):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
resampling_method: interpolation method used by Google Earth Engine. Default is 'bilinear'. All options are: ('bilinear', 'bicubic', None).
"""

def __init__(self, spatial_resolution=30, **kwargs):
def __init__(self, spatial_resolution:int=30, resampling_method:str='bilinear', **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution
self.resampling_method = resampling_method

def get_data(self, bbox):
def get_data(self, bbox: tuple[float, float, float, float]):
alos_dsm = ee.ImageCollection("JAXA/ALOS/AW3D30/V3_2")

alos_dsm_ic = ee.ImageCollection(alos_dsm
.filterBounds(ee.Geometry.BBox(*bbox))
.select('DSM')
.mean()
)
alos_dsm_ic = ee.ImageCollection(
alos_dsm
.filterBounds(ee.Geometry.BBox(*bbox))
.select('DSM')
.map(lambda x:
set_resampling_for_continuous_raster(x,
self.resampling_method,
self.spatial_resolution,
bbox
)
)
.mean()
)


data = get_image_collection(
alos_dsm_ic,
Expand Down
23 changes: 23 additions & 0 deletions city_metrix/layers/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -325,6 +325,29 @@ def get_stats_funcs(stats_func):
return [stats_func]


def set_resampling_for_continuous_raster(image: ee.Image, resampling_method: str, resolution: int,
bbox: tuple[float, float, float, float]):
"""
Function sets the resampling method on the GEE query dictionary for use on continuous raster layers.
GEE only supports bilinear and bicubic interpolation methods.
"""
valid_raster_resampling_methods = ['bilinear', 'bicubic', None]

if resampling_method not in valid_raster_resampling_methods:
raise ValueError(f"Invalid resampling method ('{resampling_method}'). "
f"Valid methods: {valid_raster_resampling_methods}")

if resampling_method is None:
data = image
else:
crs = get_utm_zone_epsg(bbox)
data = (image
.resample(resampling_method)
.reproject(crs=crs, scale=resolution))

return data


def get_image_collection(
image_collection: ImageCollection,
bbox: Tuple[float],
Expand Down
15 changes: 12 additions & 3 deletions city_metrix/layers/nasa_dem.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,25 +2,34 @@
import xee
import xarray as xr

from .layer import Layer, get_image_collection
from .layer import Layer, get_image_collection, set_resampling_for_continuous_raster


class NasaDEM(Layer):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
resampling_method: interpolation method used by Google Earth Engine. Default is 'bilinear'. All options are: ('bilinear', 'bicubic', None).
"""

def __init__(self, spatial_resolution=30, **kwargs):
def __init__(self, spatial_resolution:int=30, resampling_method:str='bilinear', **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution
self.resampling_method = resampling_method

def get_data(self, bbox):
def get_data(self, bbox: tuple[float, float, float, float]):
nasa_dem = ee.Image("NASA/NASADEM_HGT/001")

nasa_dem_elev = (ee.ImageCollection(nasa_dem)
.filterBounds(ee.Geometry.BBox(*bbox))
.select('elevation')
.map(lambda x:
set_resampling_for_continuous_raster(x,
self.resampling_method,
self.spatial_resolution,
bbox
)
)
.mean()
)

Expand Down
9 changes: 9 additions & 0 deletions tests/resources/bbox_constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,12 @@
-38.39993,-12.93239
)

BBOX_NLD_AMSTERDAM_TEST = (
4.9012,52.3720,
4.9083,52.3752
)

BBOX_NLD_AMSTERDAM_LARGE_TEST = (
4.884629880473071,52.34146514406914,
4.914180290924863,52.359560786247165
)
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
import shutil
from collections import namedtuple

from tests.resources.bbox_constants import BBOX_BRA_LAURO_DE_FREITAS_1
from tests.resources.bbox_constants import BBOX_BRA_LAURO_DE_FREITAS_1, BBOX_NLD_AMSTERDAM_TEST, \
BBOX_NLD_AMSTERDAM_LARGE_TEST
from tests.tools.general_tools import create_target_folder, is_valid_path

# RUN_DUMPS is the master control for whether the writes and tests are executed
Expand All @@ -19,6 +20,8 @@
# Both the tests and QGIS file are implemented for the same bounding box in Brazil.
COUNTRY_CODE_FOR_BBOX = 'BRA'
BBOX = BBOX_BRA_LAURO_DE_FREITAS_1
# BBOX = BBOX_NLD_AMSTERDAM_TEST
# BBOX = BBOX_NLD_AMSTERDAM_LARGE_TEST

# Specify None to write to a temporary default folder otherwise specify a valid custom target path.
CUSTOM_DUMP_DIRECTORY = None
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,24 @@
import pytest

from city_metrix.layers import *
from .conftest import RUN_DUMPS, prep_output_path, verify_file_is_populated, get_file_count_in_folder
from .conftest import RUN_DUMPS, prep_output_path, verify_file_is_populated

TARGET_RESOLUTION = 5
TARGET_RESAMPLING_METHOD = 'bilinear'
# TARGET_RESAMPLING_METHOD = None

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_albedo_fixed_res(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, f'albedo_{TARGET_RESOLUTION}m.tif')
Albedo(spatial_resolution=TARGET_RESOLUTION).write(bbox_info.bounds, file_path, tile_degrees=None)
(Albedo(spatial_resolution=TARGET_RESOLUTION, resampling_method=TARGET_RESAMPLING_METHOD)
.write(bbox_info.bounds, file_path, tile_degrees=None))
assert verify_file_is_populated(file_path)

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_alos_dsm_fixed_res(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, f'alos_dsm_{TARGET_RESOLUTION}m.tif')
AlosDSM(spatial_resolution=TARGET_RESOLUTION).write(bbox_info.bounds, file_path, tile_degrees=None)
(AlosDSM(spatial_resolution=TARGET_RESOLUTION, resampling_method=TARGET_RESAMPLING_METHOD)
.write(bbox_info.bounds, file_path, tile_degrees=None))
assert verify_file_is_populated(file_path)

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
Expand Down Expand Up @@ -64,7 +68,8 @@ def test_write_land_surface_temperature_fixed_res(target_folder, bbox_info, targ
@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_nasa_dem_fixed_res(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, f'nasa_dem_{TARGET_RESOLUTION}m.tif')
NasaDEM(spatial_resolution=TARGET_RESOLUTION).write(bbox_info.bounds, file_path, tile_degrees=None)
(NasaDEM(spatial_resolution=TARGET_RESOLUTION, resampling_method=TARGET_RESAMPLING_METHOD)
.write(bbox_info.bounds, file_path, tile_degrees=None))
assert verify_file_is_populated(file_path)

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
Expand Down
21 changes: 18 additions & 3 deletions tests/test_layer_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,23 @@ def test_read_image_collection_scale():
pytest.approx(expected_y_size, rel=EE_IMAGE_DIMENSION_TOLERANCE) == actual_y_size
)

def test_albedo_metrics():
data = Albedo().get_data(BBOX)
def test_albedo_metrics_default_resampling():
# Default resampling_method is bilinear
data = Albedo(spatial_resolution=10).get_data(BBOX)

# Bounding values
expected_min_value = _convert_fraction_to_rounded_percent(0.03)
expected_max_value = _convert_fraction_to_rounded_percent(0.34)
actual_min_value = _convert_fraction_to_rounded_percent(data.values.min())
actual_max_value = _convert_fraction_to_rounded_percent(data.values.max())

# Value range
assert expected_min_value == actual_min_value
assert expected_max_value == actual_max_value


def test_albedo_metrics_no_resampling():
data = Albedo(spatial_resolution=10, resampling_method= None).get_data(BBOX)

# Bounding values
expected_min_value = _convert_fraction_to_rounded_percent(0.03)
Expand All @@ -62,7 +77,7 @@ def test_albedo_metrics():


def test_alos_dsm_metrics():
data = AlosDSM().get_data(BBOX)
data = AlosDSM(resampling_method=None).get_data(BBOX)

# Bounding values
expected_min_value = 16
Expand Down

0 comments on commit df3e021

Please sign in to comment.