-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into CIF-292-Add-optional-buffering-of-tiles
- Loading branch information
Showing
13 changed files
with
715 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import ee | ||
from timezonefinder import TimezoneFinder | ||
from pytz import timezone | ||
from datetime import datetime | ||
import pytz | ||
import cdsapi | ||
import os | ||
import xarray as xr | ||
|
||
from .layer import Layer | ||
|
||
class Era5HottestDay(Layer): | ||
def __init__(self, start_date="2023-01-01", end_date="2024-01-01", **kwargs): | ||
super().__init__(**kwargs) | ||
self.start_date = start_date | ||
self.end_date = end_date | ||
|
||
def get_data(self, bbox): | ||
dataset = ee.ImageCollection("ECMWF/ERA5_LAND/HOURLY") | ||
|
||
# Function to find the city mean temperature of each hour | ||
def hourly_mean_temperature(image): | ||
hourly_mean = image.select('temperature_2m').reduceRegion( | ||
reducer=ee.Reducer.mean(), | ||
geometry=ee.Geometry.BBox(*bbox), | ||
scale=11132, | ||
bestEffort=True | ||
).values().get(0) | ||
|
||
return image.set('hourly_mean_temperature', hourly_mean) | ||
|
||
era5 = ee.ImageCollection(dataset | ||
.filterBounds(ee.Geometry.BBox(*bbox)) | ||
.filterDate(self.start_date, self.end_date) | ||
.select('temperature_2m') | ||
) | ||
|
||
era5_hourly_mean = era5.map(hourly_mean_temperature) | ||
|
||
# Sort the collection based on the highest temperature and get the first image | ||
highest_temperature_day = era5_hourly_mean.sort('hourly_mean_temperature', False).first() | ||
highest_temperature_day = highest_temperature_day.get('system:index').getInfo() | ||
|
||
# system:index in format 20230101T00 | ||
year = highest_temperature_day[0:4] | ||
month = highest_temperature_day[4:6] | ||
day = highest_temperature_day[6:8] | ||
time = highest_temperature_day[-2:] | ||
|
||
min_lon, min_lat, max_lon, max_lat = bbox | ||
center_lon = (min_lon + max_lon) / 2 | ||
center_lat = (min_lat + max_lat) / 2 | ||
|
||
# Initialize TimezoneFinder | ||
tf = TimezoneFinder() | ||
# Find the timezone of the center point | ||
tz_name = tf.timezone_at(lng=center_lon, lat=center_lat) | ||
# Get the timezone object | ||
local_tz = timezone(tz_name) | ||
# Define the UTC time | ||
utc_time = datetime.strptime(f'{year}-{month}-{day} {time}:00:00', "%Y-%m-%d %H:%M:%S") | ||
|
||
# Convert UTC time to local time | ||
local_time = utc_time.replace(tzinfo=pytz.utc).astimezone(local_tz) | ||
local_date = local_time.date() | ||
|
||
utc_times = [] | ||
for i in range(0, 24): | ||
local_time_hourly = local_tz.localize(datetime(local_date.year, local_date.month, local_date.day, i, 0)) | ||
utc_time_hourly = local_time_hourly.astimezone(pytz.utc) | ||
utc_times.append(utc_time_hourly) | ||
|
||
utc_dates = list(set([dt.date() for dt in utc_times])) | ||
|
||
dataarray_list = [] | ||
c = cdsapi.Client() | ||
for i in range(len(utc_dates)): | ||
c.retrieve( | ||
'reanalysis-era5-single-levels', | ||
{ | ||
'product_type': 'reanalysis', | ||
'variable': [ | ||
'10m_u_component_of_wind', '10m_v_component_of_wind', '2m_dewpoint_temperature', | ||
'2m_temperature', 'clear_sky_direct_solar_radiation_at_surface', 'mean_surface_direct_short_wave_radiation_flux_clear_sky', | ||
'mean_surface_downward_long_wave_radiation_flux_clear_sky', 'sea_surface_temperature', 'total_precipitation', | ||
], | ||
'year': utc_dates[i].year, | ||
'month': utc_dates[i].month, | ||
'day': utc_dates[i].day, | ||
'time': ['00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00', '09:00', | ||
'10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00', '18:00', '19:00', | ||
'20:00', '21:00', '22:00', '23:00'], | ||
'area': [max_lat, min_lon, min_lat, max_lon], | ||
'data_format': 'netcdf', | ||
'download_format': 'unarchived' | ||
}, | ||
f'download_{i}.nc') | ||
|
||
dataarray = xr.open_dataset(f'download_{i}.nc') | ||
|
||
# Subset times for the day | ||
times = [valid_time.astype('datetime64[s]').astype(datetime).replace(tzinfo=pytz.UTC) for valid_time in dataarray['valid_time'].values] | ||
indices = [i for i, value in enumerate(times) if value in utc_times] | ||
subset_dataarray = dataarray.isel(valid_time=indices) | ||
|
||
dataarray_list.append(subset_dataarray) | ||
|
||
# Remove local file | ||
os.remove(f'download_{i}.nc') | ||
|
||
data = xr.concat(dataarray_list, dim='valid_time') | ||
# xarray.Dataset to xarray.DataArray | ||
data = data.to_array() | ||
|
||
return data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
from datetime import datetime | ||
import pandas as pd | ||
import numpy as np | ||
from geopandas import GeoDataFrame, GeoSeries | ||
|
||
from city_metrix.layers import Era5HottestDay | ||
|
||
|
||
def era_5_met_preprocessing(zones: GeoDataFrame) -> GeoSeries: | ||
""" | ||
Get ERA 5 data for the hottest day | ||
:param zones: GeoDataFrame with geometries to collect zonal stats on | ||
:return: Pandas Dataframe of data | ||
""" | ||
era_5_data = Era5HottestDay().get_data(zones.total_bounds) | ||
|
||
t2m_var = era_5_data.sel(variable='t2m').values | ||
u10_var = era_5_data.sel(variable='u10').values | ||
v10_var = era_5_data.sel(variable='v10').values | ||
sst_var = era_5_data.sel(variable='sst').values | ||
cdir_var = era_5_data.sel(variable='cdir').values | ||
sw_var = era_5_data.sel(variable='msdrswrfcs').values | ||
lw_var = era_5_data.sel(variable='msdwlwrfcs').values | ||
d2m_var = era_5_data.sel(variable='d2m').values | ||
time_var = era_5_data['valid_time'].values | ||
lat_var = era_5_data['latitude'].values | ||
lon_var = era_5_data['longitude'].values | ||
|
||
# temps go from K to C; global rad (cdir) goes from /hour to /second; wind speed from vectors (pythagorean) | ||
# rh calculated from temp and dew point; vpd calculated from tepm and rh | ||
times = [time.astype('datetime64[s]').astype(datetime) for time in time_var] | ||
t2m_vals = (t2m_var[:]-273.15) | ||
d2m_vals = (d2m_var[:]-273.15) | ||
rh_vals = (100*(np.exp((17.625*d2m_vals)/(243.04+d2m_vals))/np.exp((17.625*t2m_vals)/(243.04+t2m_vals)))) | ||
grad_vals = (cdir_var[:]/3600) | ||
dir_vals = (sw_var[:]) | ||
dif_vals = (lw_var[:]) | ||
wtemp_vals = (sst_var[:]-273.15) | ||
wind_vals = (np.sqrt(((np.square(u10_var[:]))+(np.square(v10_var[:]))))) | ||
# calc vapor pressure deficit in hPa for future utci conversion. first, get svp in pascals and then get vpd | ||
svp_vals = (0.61078*np.exp(t2m_vals/(t2m_vals+237.3)*17.2694)) | ||
vpd_vals = ((svp_vals*(1-(rh_vals/100))))*10 | ||
|
||
# make lat/lon grid | ||
latitudes = lat_var[:] | ||
longitudes = lon_var[:] | ||
latitudes_2d, longitudes_2d = np.meshgrid(latitudes, longitudes, indexing='ij') | ||
latitudes_flat = latitudes_2d.flatten() | ||
longitudes_flat = longitudes_2d.flatten() | ||
|
||
# create pandas dataframe | ||
df = pd.DataFrame({ | ||
'time': np.repeat(times, len(latitudes_flat)), | ||
'lat': np.tile(latitudes_flat, len(times)), | ||
'lon': np.tile(longitudes_flat, len(times)), | ||
'temp': t2m_vals.flatten(), | ||
'rh': rh_vals.flatten(), | ||
'global_rad': grad_vals.flatten(), | ||
'direct_rad': dir_vals.flatten(), | ||
'diffuse_rad': dif_vals.flatten(), | ||
'water_temp': wtemp_vals.flatten(), | ||
'wind': wind_vals.flatten(), | ||
'vpd': vpd_vals.flatten() | ||
}) | ||
# round all numbers to two decimal places, which is the precision needed by the model | ||
df = df.round(2) | ||
|
||
return df |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Setup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"sys.dont_write_bytecode=True\n", | ||
"\n", | ||
"%load_ext autoreload\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import geopandas as gpd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# # update the wd path to be able to laod the module\n", | ||
"os.chdir('../..')\n", | ||
"os.getcwd()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Get Area of Interest" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# load boundary from s3\n", | ||
"boundary_path = 'https://cities-indicators.s3.eu-west-3.amazonaws.com/data/boundaries/boundary-BRA-Salvador-ADM4union.geojson'\n", | ||
"city_gdf = gpd.read_file(boundary_path, driver='GeoJSON')\n", | ||
"city_gdf.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Get area in sqare km\n", | ||
"city_gdf.to_crs(epsg=3857).area / 10**6" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Get Layer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%autoreload\n", | ||
"from city_metrix.layers import Era5HottestDay\n", | ||
"\n", | ||
"hottest_day = Era5HottestDay().get_data(city_gdf.total_bounds)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"hottest_day" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "cities-cif", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.