This repository has a Dockerfile for deploying DeepFace Models in Ainize.
requirements
- python3
- deepface==0.0.33 (only for example)
cd example
python3 example.py --mode verify --model VGGFace --image1 ./sample1.png --image2 ./sample2.png
mode = [verify, analyze]
model = [VGGFace, OpenFace, FbDeepFace, DeepID, Facenet, Age, Gender, Race, Emotion]
or each branch has a example code.
# in vggface branch
cd example
python3 example.py
You must use detected face image.
# input_shape = (None, 224, 224, 3)
# output_shape = (None, None)
# You can check metadata in https://vggface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/vggface/metadata
URL = "https://vggface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/vggface:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 96, 96, 3)
# output_shape = (None, 128)
# You can check metadata in https://openface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/openface/metadata
URL = "https://openface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/openface:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 152, 152, 3)
# output_shape = (None, 4096)
# You can check metadata in https://fbdeepface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/fbdeepface/metadata
URL = "https://fbdeepface-deepface-model-woomurf.endpoint.ainize.ai/v1/models/fbdeepface:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 55, 47, 3)
# output_shape = (None, 160)
# You can check metadata in https://deepid-deepface-model-woomurf.endpoint.ainize.ai/v1/models/deepid/metadata
URL = "https://deepid-deepface-model-woomurf.endpoint.ainize.ai/v1/models/deepid:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 160, 160, 3)
# output_shape = (None, 128)
# You can check metadata in https://facenet-deepface-model-woomurf.endpoint.ainize.ai/v1/models/facenet/metadata
URL = "https://facenet-deepface-model-woomurf.endpoint.ainize.ai/v1/models/facenet:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 224, 224, 3)
# output_shape = (None, None)
# You can check metadata in https://age-deepface-model-woomurf.endpoint.ainize.ai/v1/models/age/metadata
URL = "https://age-deepface-model-woomurf.endpoint.ainize.ai/v1/models/age:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 224, 224, 3)
# output_shape = (None, None)
# You can check metadata in https://gender-deepface-model-woomurf.endpoint.ainize.ai/v1/models/gender/metadata
URL = "https://gender-deepface-model-woomurf.endpoint.ainize.ai/v1/models/gender:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 224, 224, 3)
# output_shape = (None, None)
# You can check metadata in https://race-deepface-model-woomurf.endpoint.ainize.ai/v1/models/race/metadata
URL = "https://race-deepface-model-woomurf.endpoint.ainize.ai/v1/models/race:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']
You must use detected face image.
# input_shape = (None, 48, 48, 1)
# output_shape = (None, 7)
# You can check metadata in https://emotion-deepface-model-woomurf.endpoint.ainize.ai/v1/models/emotion/metadata
URL = "https://emotion-deepface-model-woomurf.endpoint.ainize.ai/v1/models/emotion:predict"
data = {
"instances": image
}
data = json.dumps(data)
response = requests.post(URL, data=data)
response_text = response.text
result = json.loads(response_text)
result = result['predictions']