Skip to content

YOLOv5 object detection with C#, ML.NET, ONNX

License

Notifications You must be signed in to change notification settings

winhoals/yolov5-net

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Yolov5Net

YOLOv5 object detection with ML.NET, ONNX

example

Installation

Run this line from Package Manager Console:

Install-Package Yolov5Net -Version 1.0.9

For CPU usage run this line from Package Manager Console:

Install-Package Microsoft.ML.OnnxRuntime -Version 1.9.0

For GPU usage run this line from Package Manager Console:

Install-Package Microsoft.ML.OnnxRuntime.Gpu -Version 1.9.0

CPU and GPU packages can't be installed together.

Usage

Yolov5Net contains two COCO pre-defined models: YoloCocoP5Model, YoloCocoP6Model.

If you have custom trained model, then inherit from YoloModel and override all the required properties and methods. See YoloCocoP5Model or YoloCocoP6Model implementation to get know how to wrap your own model.

using var image = Image.FromFile("Assets/test.jpg");

using var scorer = new YoloScorer<YoloCocoP5Model>("Assets/Weights/yolov5s.onnx");

List<YoloPrediction> predictions = scorer.Predict(image);

using var graphics = Graphics.FromImage(image);

foreach (var prediction in predictions) // iterate predictions to draw results
{
	double score = Math.Round(prediction.Score, 2);

	graphics.DrawRectangles(new Pen(prediction.Label.Color, 1),
		new[] { prediction.Rectangle });

	var (x, y) = (prediction.Rectangle.X - 3, prediction.Rectangle.Y - 23);

	graphics.DrawString($"{prediction.Label.Name} ({score})",
		new Font("Arial", 16, GraphicsUnit.Pixel), new SolidBrush(prediction.Label.Color),
		new PointF(x, y));
}

image.Save("Assets/result.jpg");

About

YOLOv5 object detection with C#, ML.NET, ONNX

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 100.0%