Skip to content

williamd4112/infer-policy-feature

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This repository is the tensorflow implementations of the paper DPIQN: Deep Policy Inference Q-Network.

Requirments

Training

Simply enter the following command to train a DPIQN agent:

 python src/train_dpiqn.py

The following arguments can help you customize your own training arguments:

 --gpu                 comma separated list of GPU(s) to use.
 --load                load model
 --log                 train log dir
 --task                task to perform {play, eval, train}
 --algo                algorithm for computing Q-value {DQN, Double, Dueling}
 --mode                specify ai mode in env (can be list) {offensive, defensive}
 --mt_mode             multi-task setting {coop-only,opponent-only,all}
 --mt                  use 2v2 env
 --skip                act repeat
 --hist_len            hist len
 --batch_size          batch size (default: 32)
 --lr                  init lr value (default: 1e-3)
 --rnn                 use rnn (DRPIQN)
 --lr_sched            lr schedule (default: 600:4e-4,1000:2e-4)
 --eps_sched           eps decay schedule (default: 100:0.1,3200:0.01)
 --reg                 reg

For example, if you run the following command:

python src/train_dpiqn.py --gpu=1 --mt --mt_mode=coop-only --eps_sched='100:0.1,3200:0.01' 

Then it will start training a DPIQN model in 2 vs. 2 soccer game, and it will only infer its coolaborator's policy. Besides, the eps parameter for epsilon-greedy will decrease to 0.1 at epoch 100, and down to 0.01 at epochj 3200.

Testing

To test the model, enter the command:

 python src/train_dpiqn.py --load=[path_to_model] --task=eval

The model will be evaluated for 100,000 episodes. In addition, you can use the following command to watch how your agent play:

 python src/train_dpiqn.py --load=[path_to_model] --task=play

Note that you can also use the same optional arguments listed in Training section.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages